首页 | 本学科首页   官方微博 | 高级检索  
     


Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases
Authors:Ali Bougatef  Naima Nedjar-Arroume  Rozenn Ravallec-Plé  Yves Leroy  Didier Guillochon  Ahmed Barkia  Moncef Nasri
Affiliation:1. Laboratoire de Génie Enzymatique et de Microbiologie – Ecole Nationale d’Ingénieurs de Sfax, B.P “W“ 3038 Sfax, Tunisia;2. Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien, IUT A Lille I, BP 179, 59653 Villeneuve d’Ascq Cedex, France;3. CNRS Unité Mixte de Recherche 8576, Laboratoire de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d’Ascq Cedex, France
Abstract:The angiotensin I-converting enzyme (ACE) inhibitory activities of protein hydrolysates prepared from heads and viscera of sardinelle (Sardinella aurita) by treatment with various proteases were investigated. Protein hydrolysates were obtained by treatment with Alcalase®, chymotrypsin, crude enzyme preparations from Bacillus licheniformis NH1 and Aspergillus clavatus ES1, and crude enzyme extract from sardine (Sardina pilchardus) viscera. All hydrolysates exhibited inhibitory activity towards ACE. The alkaline protease extract from the viscera of sardine produced hydrolysate with the highest ACE inhibitory activity (63.2 ± 1.5% at 2 mg/ml). Further, the degrees of hydrolysis and the inhibitory activities of ACE increased with increasing proteolysis time. The protein hydrolysate generated with alkaline proteases from the viscera of sardine was then fractionated by size exclusion chromatography on a Sephadex G-25 into eight major fractions (P1–P8). Biological functions of all fractions were assayed, and P4 was found to display a high ACE inhibitory activity. The IC50 values for ACE inhibitory activities of sardinelle by-products protein hydrolysates and fraction P4 were 1.2 ± 0.09 and 0.81 ± 0.013 mg/ml, respectively. Further, P4 showed resistance to in vitro digestion by gastrointestinal proteases. The amino acid analysis by GC/MS showed that P4 was rich in phenylalanine, arginine, glycine, leucine, methionine, histidine and tyrosine. The added-value of sardinelle by-products may be improved by enzymatic treatment with visceral serine proteases from sardine.
Keywords:Sardinelle by-products  Sardine serine proteases  Enzymatic treatment  ACE inhibitory activities  Protein hydrolysates
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号