首页 | 本学科首页   官方微博 | 高级检索  
     


Technique for rapid detection of phthalates in water and beverages
Authors:Asif I Zia  Mohd Syaifudin Abdul Rahman  Subhas Chandra Mukhopadhyay  Pak-Lam Yu  IH Al-Bahadly  Chinthaka P Gooneratne  Jǘrgen Kosel  Tai-Shan Liao
Affiliation:1. School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand;2. Sensing, Magnetism and Microsystems Group, King Abdullah University of Science and Technology, Saudi Arabia;3. Instrument Technology Research Centre, National Applied Research Laboratories, Hsinchu, Taiwan;4. Department of Physics, COMSATS Institute of Information Technology, Islamabad, Pakistan
Abstract:The teratogenic and carcinogenic effects of phthalate esters on living beings are proven in toxicology studies. These ubiquitous food and environmental pollutants pose a great danger to the human race due to their extraordinary use as a plasticizer in the consumer product industry. Contemporary detection techniques used for phthalates require a high level of skills, expensive equipment and longer analysis time than the presented technique. Presented research work introduces a real time non-invasive detection technique using a new type of silicon substrate based planar interdigital (ID) sensor fabricated on basis of thin film micro-electromechanical system (MEMS) semiconductor device fabrication technology. Electrochemical impedance spectroscopy (EIS) was used in conjunction with the fabricated sensor to detect phthalates in deionized water. Various concentrations of di(2-ethylhexyl) phthalate (DEHP) as low as 2 ppb to a higher level of 2 ppm in deionized water were detected distinctively using new planar ID sensor based EIS sensing system. Dip testing method was used to obtain the conductance and dielectric properties of the bulk samples. Parylene C polymer coating was used as a passivation layer on the surface of the fabricated sensor to reduce the influence of Faradaic currents. In addition, inherent dielectric properties of the coating enhanced the sensitivity of the capacitive type sensor. Electrochemical spectrum analysis algorithm was used to model experimentally observed impedance spectrum to deduce constant phase element (CPE) equivalent circuit to analyse the kinetic processes taking place inside the electrochemical cell. Curve fitting technique was used to extract the values of the circuit components and explain experimental results on theoretical grounds. The sensor performance was tested by adding DEHP to an energy drink at concentrations above and below the minimal risk level (MRL) limit set by the ATSDR (Agency for Toxic Substances & Disease Registry), USA. Results showed that the new sensor was able to detect different concentrations of phthalates in energy drinks. The experimental outcomes provided sufficient indication to favour the development of a low cost detection system for rapid quantification of phthalates in beverages for industrial use.
Keywords:Interdigital sensors  Phthalates  DEHP  Impedance spectroscopy  Constant phase element  Electrochemical
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号