首页 | 本学科首页   官方微博 | 高级检索  
     


Fungal community associated with fermentation and storage of Fuzhuan brick-tea
Authors:Xu Aiqing  Wang Yuanliang  Wen Jieyu  Liu Ping  Liu Ziyin  Li Zongjun
Affiliation:
  • a Institute of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
  • b School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
  • c National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
  • Abstract:Chinese Fuzhuan brick-tea is a unique microbial fermented tea characterized by a period of fungal growth during its manufacturing process. The aim of the present study was to characterize, both physicochemically and microbiologically, traditional industrial production processes of Fuzhuan brick-tea. Fermenting tea samples were collected from the largest manufacturer. Physicochemical analyses showed that the low water content in the tea substrates provided optimal growth conditions for xerophilic fungi. The fungal communities existing in tea materials, fermenting tea, and stored teas were monitored by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) targeting the D1 region of the 26S rRNA genes, followed by sequencing of the amplicons. Results revealed that the microorganisms were from, or closely related to, the genera Eurotium, Debaryomyces, Aspergillus, Verticillium, Pichia, Pestalotiopsis, Rhizomucor and Beauveria. This is the first report of Debaryomyces participating in the processing of Fuzhuan brick-tea. We concluded that the dominant genera Eurotium, Debaryomyces and Aspergillus are beneficial fungi associated with the fermentation of Fuzhuan brick-tea. The genus Beauveria was present in the stored Fuzhuan brick-tea, which may help protect tea products from insect spoilage. The remaining four genera were of minor importance in the manufacturing of Fuzhuan brick-tea. The predominant Eurotium species, a strain named Eurotium sp. FZ, was phenotypically and genotypically identified as Eurotium cristatum. High performance thin layer chromatography analysis of anthraquinones showed that emodin existed in all the dark tea samples, but physcion was only detectable in the tea fermented by E. cristatum. The PCR-DGGE approach was an effective and convenient means for profiling the fungal communities in Fuzhuan brick-tea. These results may help promote the use of microbial consortia as starter cultures to stabilize and improve the quality of Fuzhuan brick-tea products.
    Keywords:Fuzhuan brick-tea  Fungal community  Denaturing gradient gel electrophoresis  Eurotium cristatum  Debaryomyces hansenii  Anthraquinone
    本文献已被 ScienceDirect PubMed 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号