首页 | 本学科首页   官方微博 | 高级检索  
     


Complex formation, thermal properties, and in-vitro digestibility of gelatinized potato starch-fatty acid mixtures
Authors:Kiyoshi Kawai  Setsuko TakatoTomoko Sasaki  Kazuhito Kajiwara
Affiliation:a Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
b Department of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji, Tokyo 192-0982, Japan
c National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
Abstract:Effects of the type and amount of fatty acid (0-2.0 mmol/g-starch of lauric, myristic, palmitic, stearic, oleic, and linoleic acids) on the complex formation, thermal properties, and in-vitro digestibility of gelatinized potato starch-fatty acid mixtures were investigated. Complex index (CI) evaluated by the reduction in the iodine binding capacity of starch increased with an increase in the amount of fatty acids, and reached a plateau depending on the type of fatty acid. The maximum CI value was higher in the order of lauric (49.9%), linoleic (47.6%), myristic (42.4%), oleic (36.7%), stearic (35.3%), and palmitic acid (30.9%). From the calorimetric study, it was demonstrated that melting temperature of the complexes was higher in the order of stearic (96.7 °C) > lauric, myristic, palmitic, and oleic (89.6-92.1 °C) > linoleic acid (78.3 °C). Melting enthalpy for complexes was roughly related to the CI value (R2 = 0.667). From the in-vitro digestibility measurement, it was found that a certain amount of fatty acid reduced the starch content hydrolyzed at a given condition. Among them, 0.50 mmol/g-starch lauric and oleic acid samples showed the largest reduction in the hydrolyzed starch content. This result was related to the extent of complex formation characterized by CI value and its helical order characterized by melting temperature. In addition, there was a possibility of the complex formation between amylose and unsaturated fatty acid during the hydrolysis of gelatinized starch.
Keywords:Potato starch  Amylose  Fatty acid  Complex  In-vitro digestibility
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号