首页 | 本学科首页   官方微博 | 高级检索  
     


Atmospherc deposition of organochlorine compounds to remote high mountain lakes of Europe
Authors:Carrera Guillem  Fernández Pilar  Grimalt Joan O  Ventura Marc  Camarero Lluis  Catalan Jordi  Nickus Ulrike  Thies Hansjörg  Psenner Roland
Affiliation:Institute of Chemical and Environmental Research (ICER-CSIC), Barcelona, Catalonia, Spain.
Abstract:Bulk deposition samples were taken near three mountain lakes located in the Pyrenees (Estany Redó), Alps (Gossenk?llesee), and Caledonian Mountains (Ovre Ne?dalsvatn) for evaluation of the atmospheric deposition load of organochlorine compounds (OC), namely, polychlorobiphenyls (PCBs), hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), and endosulfans, in the remote European high mountain areas. The compounds of present use in agriculture, namely, endosulfans and gamma-HCH, exhibit large differences in mean deposition fluxes between the three sites. They occur in large amounts in Estany Redó (340 and 430 ng m(-2) month(-1) for endosulfans and gamma-HCH, respectively), reflecting the impact of agricultural activities in southern Europe. This lake showed also the highest proportion of the more labile endosulfan isomers (alpha and beta = 82%) whereas only the most recalcitrant species, endosulfan sulfate, was found in Ovre Ne?dalsvatn. In contrast, the OC whose use is now banned exhibit a more uniform geographic distribution with deposition fluxes of 31-40, 30-100, and 1.4-15 ng m(-2) month(-1) for alpha-HCH, PCBs, and HCB. Both compounds of present and past use exhibit a clear seasonal pattern, with higher deposition in the warm periods, which is consistent with enhanced volatilization at higher temperatures. In the case of the agricultural pesticides it may also reflect higher use during application periods. The OC distributions in the atmospheric deposition of the three sites are rather uniform and highly enriched in compounds with volatilities larger than 0.0032 Pa. However, more than 90% of these compounds are not retained in the lake waters or sediments. Comparison of OC composition in atmospheric and sedimentary deposition evidences a selective trapping of the less volatile compounds. Trapping efficiencies increase at decreasing air temperatures of the lacustrine systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号