首页 | 本学科首页   官方微博 | 高级检索  
     


High strain rate compression of titanium and some titanium alloys
Authors:GL Wulf
Affiliation:

Materials Research Laboratories, P.O. Box 60, Alexandria, NSW 2015, Australia

Abstract:A modified Hopkinson bar was used to compress specimens of commercially-pure titanium, IMI 125 and titanium alloys, AMS 4911B and AMS 4916B, at natural strain rates of between 3 × 103 s−1 and 3 × 104 s−1. All three materials deformed in a viscous manner with a linear increase of flow stress with strain rate and a macroscopic viscosity of 4·5 kPa s, 5·7 kPa s and 9·2 kPa s, respectively. At strain rates above about 1 × 104 s−1 there was a decrease in macroscopic viscosities to 0·9 kPa s and 2·5 kPa s for the titanium and 4911B alloy respectively, which is attributed to changes in the dislocation drag mechanisms. The results for the 4916B alloy at the higher strain rates were too scattered to give a definite trend. It is suggested that the increase in the macroscopic viscosity with alloying is due to an increase in the dislocation drag coefficient by solution hardening and to a reduction in the density of mobile dislocations by dislocation pinning.

It is also proposed that the susceptibility of these materials to catastrophic shear failure which occurs without prior linear work-softening is due to the higher propensity for titanium and titanium alloys to shear failure as a consequence of their thermo-mechanical properties. The decrease of strain at which shear occurred with increasing strength is in accord with this suggestion.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号