首页 | 本学科首页   官方微博 | 高级检索  
     

基于VMD和MRVM变负荷工况下的滚动轴承故障诊断
作者姓名:徐波  周凤星  黎会鹏  严保康  刘毅  严丹
作者单位:(1. 武汉科技大学信息科学与工程学院 武汉,430081)(2. 黄冈师范学院电子信息学院 黄冈,438000)(3. 华中科技大学机械科学与工程学院 武汉,430074)
基金项目:国家自然科学基金资助项目 (61174106, 51975433, 51975430) ;国家自然科学基金青年科学基金资助项目(51707079,11703007);湖北省自然科学基金资助项目 (2019CFB133)
摘    要:为了能够对变负荷工况下的轴承早期故障及损伤程度进行准确有效的诊断,提出了基于改进混沌果蝇优化算法的变分模态分解(variable mode decomposition,简称VMD)和基于嵌套一对一算法的多分类相关向量机(multi-class relevance vector machine,简称MRVM)的智能诊断模型。首先,使用改进混沌果蝇优化算法(improved chaotic fruit fly optimization algorithm,简称ICFOA)对VMD的本征模态函数(intrinsic mode function,简称IMF)个数和惩罚参数进行优化,搜索两个参数的最优组合值;其次,使用最优组合参数值对VMD算法的关键参数进行设定,并对已知的故障信号进行分解获得相应的IMF分量;然后,使用嵌套一对一算法构造高精度的多分类RVM学习模型,将IMF分量的二维边际谱熵值作为MRVM的输入特征向量;最后,使用不同载荷下的实验数据进行验证。实验结果表明,所提出的方法能够准确地对变载荷工况下的轴承故障进行诊断,其中轴承故障类型的诊断精度为100%,轴承故障程度的诊断精度为91.87%,诊断精度较高,鲁棒性强。

关 键 词:变分模态分解  多分类相关向量机  改进混沌果蝇优化算法  嵌套一对一  二维边际谱熵  故障诊断
本文献已被 CNKI 等数据库收录!
点击此处可从《振动、测试与诊断》浏览原始摘要信息
点击此处可从《振动、测试与诊断》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号