首页 | 本学科首页   官方微博 | 高级检索  
     


Dilated and soft attention-guided convolutional neural network for breast cancer histology images classification
Authors:Yutong Zhong  Yan Piao  Guohui Zhang
Affiliation:1. School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, China;2. Pneumoconiosis Diagnosis and Treatment Center, Occupational Preventive and Treatment Hospital in Jilin Province, Changchun, China
Abstract:Breast cancer is one of the most common types of cancer in women, and histopathological imaging is considered the gold standard for its diagnosis. However, the great complexity of histopathological images and the considerable workload make this work extremely time-consuming, and the results may be affected by the subjectivity of the pathologist. Therefore, the development of an accurate, automated method for analysis of histopathological images is critical to this field. In this article, we propose a deep learning method guided by the attention mechanism for fast and effective classification of haematoxylin and eosin-stained breast biopsy images. First, this method takes advantage of DenseNet and uses the feature map's information. Second, we introduce dilated convolution to produce a larger receptive field. Finally, spatial attention and channel attention are used to guide the extraction of the most useful visual features. With the use of fivefold cross-validation, the best model obtained an accuracy of 96.47% on the BACH2018 dataset. We also evaluated our method on other datasets, and the experimental results demonstrated that our model has reliable performance. This study indicates that our histopathological image classifier with a soft attention-guided deep learning model for breast cancer shows significantly better results than the latest methods. It has great potential as an effective tool for automatic evaluation of digital histopathological microscopic images for computer-aided diagnosis.
Keywords:attention mechanism  breast cancer  classification  dilated convolution  histopathological microscopic images  deep learning
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号