首页 | 本学科首页   官方微博 | 高级检索  
     

基于可变形卷积的单帧图像眼球定位追踪
作者姓名:王鉴  张荣福
作者单位:上海理工大学光电信息与计算机工程学院,上海 200093
摘    要:针对目前眼球定位追踪算法存在的眼球定位精准度不高问题,以及为了改进眼球追踪算法的精准度并保证一定的图片处理速度,将可变形卷积网络应用于YOLO网络,对特征分布提取层面进行改进。利用可变形卷积的形变建模能力对卷积核中的各个采样点的位置增加一定的偏移变量,从而从原始单帧图像中提取更具有表征特征的信息,并与先进眼球定位追踪检测网络进行了实验对比。研究表明,可变形卷积YOLO网络的精准度可以达到0.685,平均处理图片刷新率达42帧/s,优于原YOLO网络以及其他眼球定位追踪检测网络。

关 键 词:可变形卷积  YOLO网络  眼球定位  形变建模
收稿时间:2021-03-12
本文献已被 万方数据 等数据库收录!
点击此处可从《光学仪器》浏览原始摘要信息
点击此处可从《光学仪器》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号