首页 | 本学科首页   官方微博 | 高级检索  
     


A modified post-processing technique to design a compliant based microgripper with a plunger using topological optimization
Authors:R Bharanidaran  T Ramesh
Affiliation:1.School of Mechanical and Building Sciences,Vellore Institute of Technology,Vellore,India;2.Department of Mechanical Engineering,National Institute of Technology,Tiruchirappalli,India
Abstract:The precision of microobject manipulation is predominantly based on the appropriate design of micromanipulation devices such as microgrippers. A compliant mechanism-based microgripper is an appropriate choice to achieve a highly precise and controlled motion. This research article proposes a refined technique to design a compliant-based microgripper with a plunger. The topological optimization technique has been adopted in this research work to develop the conceptual design of the mechanism. Flexure hinges are introduced in the topologically optimized design to overcome the senseless regions developed during the optimization process which is highly complicated to manufacture. Various flexure hinge contours such as rectangular, circular, and elliptical are introduced in the conceptual design domain, and their effects are investigated. Various parameters of flexure hinges are considered; the stress, the displacements, and the strain energy stored in the mechanism are studied through finite element analysis (FEA). In addition to FEA, experimental verification of the design was also performed. Both results are convincing about the structural performance of the microgripper design. In general, microdevices possess higher surface forces than volumetric forces; hence, this design is introduced with a plunger segment which is used to push the microobject for an active release during micromanipulation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号