Near‐Infrared Photodetectors Based on MoTe2/Graphene Heterostructure with High Responsivity and Flexibility |
| |
Authors: | Wenzhi Yu Shaojuan Li Yupeng Zhang Weiliang Ma Tian Sun Jian Yuan Kai Fu Qiaoliang Bao |
| |
Affiliation: | 1. Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, P. R. China;2. Department of Materials Science and Engineering, and Centre of Excellence in Future Low‐Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria, Australia;3. Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano‐Tech and Nano‐Bionics, Suzhou, P. R. China |
| |
Abstract: | 2D transition metal dichalcogenides (TMDCs) have attracted considerable attention due to their impressively high performance in optoelectronic devices. However, efficient infrared (IR) photodetection has been significantly hampered because the absorption wavelength range of most TMDCs lies in the visible spectrum. In this regard, semiconducting 2D MoTe2 can be an alternative choice owing to its smaller band gap ≈1 eV from bulk to monolayer and high carrier mobility. Here, a MoTe2/graphene heterostructure photodetector is demonstrated for efficient near‐infrared (NIR) light detection. The devices achieve a high responsivity of ≈970.82 A W?1 (at 1064 nm) and broadband photodetection (visible‐1064 nm). Because of the effective photogating effect induced by electrons trapped in the localized states of MoTe2, the devices demonstrate an extremely high photoconductive gain of 4.69 × 108 and detectivity of 1.55 × 1011 cm Hz1/2 W?1. Moreover, flexible devices based on the MoTe2/graphene heterostructure on flexible substrate also retains a good photodetection ability after thousands of times bending test (1.2% tensile strain), with a high responsivity of ≈60 A W?1 at 1064 nm at V DS = 1 V, which provides a promising platform for highly efficient, flexible, and low cost broadband NIR photodetectors. |
| |
Keywords: | 2D transition metal dichalcogenides flexible heterostructure near‐infrared photodetector |
|
|