Hierarchical and Heterogeneous Bioinspired Composites—Merging Molecular Self‐Assembly with Additive Manufacturing |
| |
Authors: | Anand K. Rajasekharan Romain Bordes Carl Sandström Magnus Ekh Martin Andersson |
| |
Affiliation: | 1. Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden;2. Department of Applied Mechanics, Chalmers University of Technology, Gothenburg, Sweden |
| |
Abstract: | Biological composites display exceptional mechanical properties owing to a highly organized, heterogeneous architecture spanning several length scales. It is challenging to translate this ordered and multiscale structural organization in synthetic, bulk composites. Herein, a combination of top‐down and bottom‐up approach is demonstrated, to form a polymer‐ceramic composite by macroscopically aligning the self‐assembled nanostructure of polymerizable lyotropic liquid crystals via 3D printing. The polymer matrix is then uniformly reinforced with bone‐like apatite via in situ biomimetic mineralization. The combinatorial method enables the formation of macrosized, heterogeneous composites where the nanostructure and chemical composition is locally tuned over microscopic distances. This enables precise control over the mechanics in specific directions and regions, with a unique intrinsic–extrinsic toughening mechanism. As a proof‐of‐concept, the method is used to form large‐scale composites mimicking the local nanostructure, compositional gradients and directional mechanical properties of heterogeneous tissues like the bone‐cartilage interface, for mechanically stable osteochondral plugs. This work demonstrates the possibility to create hierarchical and complex structured composites using weak starting components, thus opening new routes for efficient synthesis of high‐performance materials ranging from biomaterials to structural nanocomposites. |
| |
Keywords: | 3D printing calcium phosphate composites molecular self‐assembly polymerized lyotropic liquid crystals |
|
|