首页 | 本学科首页   官方微博 | 高级检索  
     

基于M带小波变换与模糊聚类的图像去噪算法
引用本文:任获荣, 余望好. 基于M带小波变换与模糊聚类的图像去噪算法[J]. 红外技术, 2004, 26(4): 36-40. DOI: 10.3969/j.issn.1001-8891.2004.04.008
作者姓名:任获荣  余望好
作者单位:西安电子科技大学机电工程学院,陕西,西安,710071;西安电子科技大学机电工程学院,陕西,西安,710071
摘    要:M带小波变换是标准二带小波变换的自然推广,能够分析具有相对窄带的高频信号,而且能更好的集中信号能量,因此在信号处理中应用广泛.本文结合模糊聚类算法,提出了一种新的基于M带小波变换的图像去噪算法,利用模糊聚类算法把小波系数划分成两类:包含信号的小波系数与只包含噪声的小波系数,对只包含噪声的小波系数置为零,将包含信号的小波系数进行利用软阈值法进行收缩,最后对处理后的系数进行M带小波逆变换,得到去噪后的图像.对SAR图像的实验结果表明,该算法有效,而且能较好地保留边缘信息.

关 键 词:M带小波  模糊聚类  图像去噪
文章编号:1001-8891(2004)04-0036-05

An Image Denoising Algorithm Based on M-band Wavelet Transform and Fuzzy Clustering
An Image Denoising Algorithm Based on M-band Wavelet Transform and Fuzzy Clustering[J]. Infrared Technology , 2004, 26(4): 36-40. DOI: 10.3969/j.issn.1001-8891.2004.04.008
Authors:REN Huo-rong  YU Wang-hao
Abstract:M-band wavelet transform is a direct generalization of standard 2-band wavelet transform and has been widely applied in signal processing due to its capabilities of analyzing high frequency signals with relatively narrow bandwidth and giving better energy compaction. A novel image denoising algorithm based on M-band wavelet transforms and fuzzy cluster algorithm is proposed. Using fuzzy clustering algorithm wavelet coefficients are separated into two classes, one is coefficients only containing noise information and the other is those containing signal information. All those coefficients only containing noise information are set to zero and all those containing signal information are soft-thresholded. Finally inverse M-band wavelet transforms are performed and the denoised image is obtained. The proposed algorithm is examined on the test image and SAR image. The experimental results show the proposed algorithm is effective and can preserve edge information better.
Keywords:M-band wavelet  fuzzy clustering  image denoising  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《红外技术》浏览原始摘要信息
点击此处可从《红外技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号