首页 | 本学科首页   官方微博 | 高级检索  
     

改进萤火虫算法在路径规划中的应用
引用本文:徐晓光,胡楠,徐禹翔,王雷. 改进萤火虫算法在路径规划中的应用[J]. 电子测量与仪器学报, 2016, 30(11): 1735-1742. DOI: 10.13382/j.jemi.2016.11.015
作者姓名:徐晓光  胡楠  徐禹翔  王雷
作者单位:安徽工程大学电气工程学院 检测技术与自动化装置重点实验室 芜湖241000
基金项目:安徽省高等学校省级自然科学研究项目(KJ2014A024)
摘    要:为了保证移动机器人路径规划的解的多样性,提出了小生境萤火虫算法(NFA)。首先,根据环境特点,建立合理的路径规划模型,将萤火虫算法(FA)的目标函数设置为移动步数,并重新设计了亮度公式、初始化方式和萤火虫移动方式;其次,在FA的基础上,引入小生境技术,并在小生境种群间加入共享信息。仿真实验表明,NFA一次运行可得到多个最优路径。相比FA,NFA的移动步数和目标函数均值分别减少了7.14%、6.76%,萤火虫亮度均值增加了8.33%;相比GA,NFA的移动步数和目标函数均值分别减少了7.14%、9.79%。结果表明NFA在算法性能上更优。

关 键 词:移动机器人  路径规划  萤火虫算法  小生境技术  信息共享

Application of improved firefly algorithm in path planning
Xu Xiaoguang,Hu Nan,Xu Yuxiang and Wang Lei. Application of improved firefly algorithm in path planning[J]. Journal of Electronic Measurement and Instrument, 2016, 30(11): 1735-1742. DOI: 10.13382/j.jemi.2016.11.015
Authors:Xu Xiaoguang  Hu Nan  Xu Yuxiang  Wang Lei
Affiliation:Key Laboratory on Detection Technology and Automation of Electrical Engineering College, Anhui Polytechnic University, Wuhu 241000, China,Key Laboratory on Detection Technology and Automation of Electrical Engineering College, Anhui Polytechnic University, Wuhu 241000, China,Key Laboratory on Detection Technology and Automation of Electrical Engineering College, Anhui Polytechnic University, Wuhu 241000, China and Key Laboratory on Detection Technology and Automation of Electrical Engineering College, Anhui Polytechnic University, Wuhu 241000, China
Abstract:In order to ensure the diversity of solution of mobile robot path planning, a niche firefly algorithm (NFA) is proposed. Firstly, according to the characteristics of environment, a rational path planning model is established, the objective function of firefly algorithm (FA) is set to mobile step count, and brightness formula, initialization method and firefly mobile method are redesigned. Secondly, on the basis of FA, niche technology is introduced, and sharing information between niche populations is added. The results show that NFA run once can obtain multiple optimal paths. At the same time, comparing with FA, mobile step count and the objective function average of NFA are respectively reduced by 7.14% and 6.76%, the brightness average of firefly are increased by 8.33%, comparing with GA, mobile step count and the objective function average of NFA are separately reduced by 7.14% and 9.79%. It shows that NFA is better in performance.
Keywords:mobile robot  path planning  firefly algorithm  niche technology  information sharing
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电子测量与仪器学报》浏览原始摘要信息
点击此处可从《电子测量与仪器学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号