首页 | 本学科首页   官方微博 | 高级检索  
     

一种用于求解0-1背包问题的动态伸缩算法
引用本文:拓守恒,周涛. 一种用于求解0-1背包问题的动态伸缩算法[J]. 计算机工程与应用, 2012, 48(4): 47-49
作者姓名:拓守恒  周涛
作者单位:1.陕西理工学院 数学与计算机科学学院,陕西 汉中 7230002.宁夏医科大学 理学院,银川 750004
基金项目:国家自然科学基金(No.81160183);国家高技术研究发展计划(863)(No.2008AA01A303);陕西省教育厅科研基金(No.2010JK459,2010JK466).
摘    要:针对0-1背包这个非确定多项式(NP)完全难题,提出一种新的启发式搜索算法来解决0-1背包问题。算法采用多维实数编码,将物品按价值/重量比从大到小排序装包,通过用启发式策略选择交换背包内和背包外物品的位置,采用动态伸缩策略调整背包大小,选取种群中部分优秀解进入下一代继续进行优化。通过5个背包实例进行测试,实验结果表明该算法收敛速度快、求解精度高,并且具有良好的稳定性。

关 键 词:0-1背包问题  实数编码  启发式搜索算法  动态伸缩调整策略  
修稿时间: 

New algorithm of solving 0-1 knapsack problem based on dynamic telescopic strategy
TUO Shouheng , ZHOU Tao. New algorithm of solving 0-1 knapsack problem based on dynamic telescopic strategy[J]. Computer Engineering and Applications, 2012, 48(4): 47-49
Authors:TUO Shouheng    ZHOU Tao
Affiliation:1.School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China2.School of Science, Ningxia Medical University, Yinchuan 750004, China
Abstract:In order to solve the 0-1 knapsack NP-complete problem, a new heuristic search algorithm is proposed. Algorithm is encod- ed with the multi-dimensional real-coded. According to the cost per unit weight, it sorts the items in a decreasing order, and in this order the items are put into knapsack until can' t be installed. The algorithm exchanges the item' s positions of the inside and outside knap- sack with a heuristic algorithm. Algorithm adjusts the items in the knapsack with a dynamic telescopic strategy and gets a better solution to the future generation. This algorithm is tested on 5 classic experiments, and the result shows that it has some advantages in convergence velocity, solution precision and stabilization.
Keywords:0-1 knapsack problem  real code  heuristic search algorithm  dynamic telescopic strategy
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号