首页 | 本学科首页   官方微博 | 高级检索  
     


Electrospun nanofibers from cyclodextrin inclusion complexes with cineole and p‐cymene: enhanced water solubility and thermal stability
Authors:Asli Celebioglu  Zehra Irem Yildiz  Tamer Uyar
Affiliation:Institute of Materials Science & Nanotechnology, UNAM‐National Nanotechnology Research Center, Bilkent University, Ankara, Turkey
Abstract:The electrospinning of self‐standing nanofibrous webs from inclusion complexes (IC) of cineole and p‐cymene with two modified cyclodextrins (HPβCD, HPγCD) was achieved without using carrier polymeric matrix. Although they are highly volatile, certain amount of cineole and p‐cymene was protected in cyclodextrin inclusion complexes nanofibers (CD‐IC‐NF). That is, 68.4%, 78.1%, 54.5% and 44.0% (w/w) of active agent were preserved in cineole/HPβCD‐IC‐NF, cineole/HPγCD‐IC‐NF, p‐cymene/HPβCD‐IC‐NF and p‐cymene/HPγCD‐IC‐NF, respectively. Remarkable, high thermal stability for cineole (~150 °C – 270 °C) and p‐cymene (~150 °C – 275 °C) was achieved for CD‐IC‐NF samples due to CD‐IC formation. The water solubility of cineole and p‐cymene was significantly improved by inclusion complexation where CD‐IC‐NF samples become readily dissolved in water. In brief, essential oils and flavours such as cineole and p‐cymene could be applicable in food and oral care applications owing to their fast‐dissolving behaviour along with high water solubility, enhanced thermal stability and free‐standing feature of CD‐IC‐NF webs.
Keywords:Cineole  cyclodextrin  electrospinning  essential oils  p‐cymene  nanofiber  thermal stability  water solubility
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号