首页 | 本学科首页   官方微博 | 高级检索  
     

基于径向基神经网络耦合确定性指数的滑坡易发性分区研究
引用本文:张庭瑜,毛忠安,孙增慧. 基于径向基神经网络耦合确定性指数的滑坡易发性分区研究[J]. 长江科学院院报, 2021, 38(11): 64-72. DOI: 10.11988/ckyyb.20200756
作者姓名:张庭瑜  毛忠安  孙增慧
作者单位:1.陕西地建土地工程技术研究院有限责任公司 高标准农田建设研究室,西安 710075; 2.陕西省土地工程建设集团有限责任公司,西安 710075; 3.陕西省土地工程建设集团有限责任公司 自然资源部退化及未利用土地整治工程重点实验室,西安 710075; 4.陕西省土地工程建设集团有限责任公司 陕西省土地整治工程技术研究中心,西安 710075
基金项目:陕西省自然科学基础研究计划项目(2019JQ-945);中央高校基本科研业务费专项(300102351502);陕西省企业创新争先青年人才托举计划项目(2021-1-2)
摘    要:滑坡易发性分区是预测滑坡的有效方法。利用径向基神经网络模型(RBFNN模型)耦合确定性指数(CF指数)构建混合模型(RBFNN-CF模型),开展陕西省汉中市城固县滑坡易发性分区研究。首先选取坡度、坡向、平面曲率、剖面曲率、高程、年平均降雨量、道路缓冲区、水系缓冲区、断层缓冲区、NDVI和地层岩组作为滑坡诱发因子,计算对应的CF指数并量化诱发因子;其次将野外调查的184个滑坡数据按照7∶3的比例划分为训练数据和测试数据,分别利用RBFNN-CF和RBFNN模型绘制滑坡易发性分区图;最后利用受试者工作特征曲线(ROC曲线)下的面积评估和对比分区的结果及模型的分类能力。结果表明:RBFNN-CF模型的分类能力和泛化性均强于RBFNN模型,值得在研究区推广,得到的滑坡易发性分区图可为当地的滑坡防治工作提供参考。

关 键 词:滑坡  易发性  RBFNN  CF指数  混合模型  GIS  ROC曲线  
收稿时间:2020-07-29
修稿时间:2020-09-30

Landslide Susceptibility Mapping Using Radial Basis Function Neural Network Coupling Certainty Factor
ZHANG Ting-yu,MAO Zhong-an,SUN Zeng-hui. Landslide Susceptibility Mapping Using Radial Basis Function Neural Network Coupling Certainty Factor[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(11): 64-72. DOI: 10.11988/ckyyb.20200756
Authors:ZHANG Ting-yu  MAO Zhong-an  SUN Zeng-hui
Abstract:Landslide susceptibility mapping is an effective means of landslide prediction. We built a hybrid model integrating RBFNN (Radial Basis Function Neural Network) with Certainty Factor (CF) for the mapping of landslide susceptibility in Chenggu County, Hanzhong City of Shaanxi Province. First of all, we selected slope, aspect, plane curvature, profile curvature, elevation, mean annual precipitation, distance to road, distance to river, distance to fault, NDVI and lithology as landslide's triggering factors and then quantified such factors by calculating the corresponding CF. Secondly, we divided the field survey data of 184 landslides into training data and test data with a ratio of 7∶3, and generate the landslide susceptibility maps using RBFNN-CF and RBFNN models, respectively. Finally, we evaluated and compared the mapping results and the classification ability of the models according to the area under the ROC curves. The results suggest that the classification and generalization ability of RBFNN-CF model are both superior to those of RBFNN model. The hybrid model is worth popularizing in the study area, and the landslide susceptibility maps obtained in this study could also provide references for local landslide prevention and control.
Keywords:landslide susceptibility  RBFNN  certainty factor  hybrid model  GIS  ROC curve  
本文献已被 万方数据 等数据库收录!
点击此处可从《长江科学院院报》浏览原始摘要信息
点击此处可从《长江科学院院报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号