首页 | 本学科首页   官方微博 | 高级检索  
     

氢氧化镧交联壳聚糖微球的微流控制备及其除磷性能
引用本文:李承威,骆华勇,张铭轩,廖鹏,方茜,荣宏伟,王竞茵. 氢氧化镧交联壳聚糖微球的微流控制备及其除磷性能[J]. 化工学报, 1951, 73(9): 3929-3939. DOI: 10.11949/0438-1157.20220501
作者姓名:李承威  骆华勇  张铭轩  廖鹏  方茜  荣宏伟  王竞茵
作者单位:1.广州大学土木工程学院,广东 广州 510006;2.中国科学院地球化学研究所环境地球化学国家重点实验室,贵州 贵阳 550081
基金项目:广州市科技计划项目(202102020694);广东省自然科学基金项目(2020A1515010856);国家自然科学基金项目(52170071);广东省教育厅创新强校青年创新人才类项目(2019KQNCX109);广州大学研究生创新能力培养资助计划项目(2020GDJC-M49)
摘    要:基于微流控技术制备了氢氧化镧[La(OH)3]交联壳聚糖(CS)微球(La-CS-M),并对其组成和结构进行表征,探究了微球吸附去除水中磷酸盐的性能和机理。结果表明,La-CS-M成功负载了La(OH)3,与传统滴落法制备的氢氧化镧交联壳聚糖球(La-CS)相比,其表面和内部具有疏松多孔结构,其体积平均粒径为415.8 μm,孔隙率为89.22%,平均孔径为960.0 nm,pHpzc约为6.5。La-CS-M在宽pH范围内(3.0~10.0)均保持较高吸附量,CO32-对La-CS-M吸附性能影响较Cl-NO3-SO42-以及腐殖酸(HA)明显。吸附动力学数据符合准二级动力学模型,等温吸附数据符合Langmuir模型且在pH=6.0时最大吸附量为56.48 mg/g。结合XPS表征和吸附数据推测La-CS-M的吸附机理涉及静电吸附和形成内层配合物(通过配位交换或Lewis酸碱作用)。吸附磷酸盐后La-CS-M可通过2.5 mol/L NaOH溶液实现脱附,具有良好的再生性和吸附稳定性。

关 键 词:氢氧化镧  壳聚糖微球  微流控  制备  吸附  废水  
收稿时间:2022-05-04

Microfludically-generated lanthanum hydroxide cross-linked chitosan microspheres for phosphate removal
Chengwei LI,Huayong LUO,Mingxuan ZHANG,Peng LIAO,Qian FANG,Hongwei RONG,Jingyin WANG. Microfludically-generated lanthanum hydroxide cross-linked chitosan microspheres for phosphate removal[J]. Journal of Chemical Industry and Engineering(China), 1951, 73(9): 3929-3939. DOI: 10.11949/0438-1157.20220501
Authors:Chengwei LI  Huayong LUO  Mingxuan ZHANG  Peng LIAO  Qian FANG  Hongwei RONG  Jingyin WANG
Affiliation:1.School of Civil Engineering, Guangzhou University, Guangzhou 510006, Guangdong, China;2.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
Abstract:Lanthanum hydroxide [La(OH)3] cross-linked chitosan (CS) microspheres (La-CS-M) were prepared based on microfluidic technology. The compositions and structures of La-CS-M were characterized by various means. The performance and mechanism of its adsorption and removal of phosphate in water were explored. The results showed that La(OH)3 was successfully loaded within La-CS-M. Compared with the cross-linked chitosan spheres (La-CS) prepared by traditional dropping method, the surface and interior of La-CS-M were porous with an volumetric mean particle size of 415.8 μm, porosity of 89.22%, average pore size of 960.0 nm, and pHpzc of about 6.5. La-CS-M maintained a high adsorption capacity in a wide pH range from 3.0 to 10.0, and the presence of CO32- had a more negative effect on phosphate adsorption compared to Cl-, NO3-, SO42- and humic acid (HA). The adsorption kinetic data and isotherm results were well fitted with pseudo-second-order model and Langmuir model, achieving a maximum adsorption capacity of 56.48 mg/g at pH 6.0. Combined with XPS characterization and adsorption data, it could be deducted that the adsorption mechanism of La-CS-M involved electrostatic adsorption and formation of inner sphere complex (through coordination exchange or Lewis acid-base interaction). After phosphate adsorption, La-CS-M could be desorbed by 2.5 mol/L NaOH solution, exhibiting good reproducibility and adsorption stability.
Keywords:lanthanum hydroxide  chitosan microspheres  microfluidic  preparation  adsorption  wastewater  
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号