首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合分块DMICA-PCA的全流程过程监控方法
引用本文:江伟,王振雷,王昕. 基于混合分块DMICA-PCA的全流程过程监控方法[J]. 化工学报, 2017, 68(2): 759-766. DOI: 10.11949/j.issn.0438-1157.20161309
作者姓名:江伟  王振雷  王昕
作者单位:1. 化学工程联合国家重点实验室, 华东理工大学化工过程先进控制和优化技术教育部重点实验室, 上海 200237;2. 上海交通大学电工与电子技术中心, 上海 200240
基金项目:国家自然科学基金重点项目(61134007);国家自然科学基金青年项目(61403141);上海市“科技创新行动计划”研发平台建设项目(13DZ2295300);上海市自然科学基金项目(14ZR1421800);流程工业综合自动化国家重点实验室开放课题基金资助项目(PAL-N201404)。
摘    要:分块策略被广泛运用于全流程过程监控领域,以解决全流程过程变量关系复杂性较高的问题,但传统的分块策略与子块建模方法都未考虑过程的动态性问题,并且传统的分块策略都片面依赖于过程知识或过程数据信息,影响了过程监控的效果,为此提出了一种基于混合分块DMICA-PCA的过程监控方法。在分析过程的动态性后,先利用已知的部分过程知识进行变量的初步分块,接着利用各分块变量之间改进的广义Dice's系数(MGDC)进行进一步的分块。然后采用DMICA-PCA方法对每个子块进行建模得到子块的统计量,并通过加权方法得到总的联合指标进行故障检测。同时对每个子块采用改进的故障诊断方法,提高了诊断效果。最后将该方法应用在TE过程的过程监控中,证明了该方法的有效性。

关 键 词:主元分析  过程控制  过程系统  混合分块  全流程  改进的广义Dice's系数  
收稿时间:2016-09-19
修稿时间:2016-12-05

Plant-wide process monitoring based on mixed multiblock DMICA-PCA
JIANG Wei,WANG Zhenlei,WANG Xin. Plant-wide process monitoring based on mixed multiblock DMICA-PCA[J]. Journal of Chemical Industry and Engineering(China), 2017, 68(2): 759-766. DOI: 10.11949/j.issn.0438-1157.20161309
Authors:JIANG Wei  WANG Zhenlei  WANG Xin
Affiliation:1. State Key Laboratory of Chemical Engineering, Key Laboratory of Advanced Control and Optimization for Chemical Processes, East China University of Science and Technology, Shanghai 200237, China;2. Center of Electrical & Electronic Technology, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract:Multiblock strategy is widely used in plant-wide process monitoring to solve problems with complicated relationships between process variables. Traditional multiblock strategies and sub-block modeling methods are not effective in plant-wide process monitoring, because dynamic characteristics of the process have not been considered and knowledge or data information of the process is exclusively exploited. A mixed multiblock DMICA-PCA method was proposed to improve process monitoring performance. First, variables were sliced into initial sub-blocks by obtained process knowledge after analysis of process dynamics and further sliced into final sub-blocks by modified general Dice's coefficient (MGDC) between variables of initial sub-blocks. Then, the DMICA-PCA method was used to establish model and acquire statistical values of variables in final sub-blocks and a combined overall index from weighted sum was developed for fault detection, which improved performances by simultaneous diagnosis on each sub-block. Effectiveness of the proposed method was validated on monitoring the Tennessee-Eastman (TE) process.
Keywords:principal component analysis  process control  process systems  mixed multiblock  plant-wide process  modified general Dice's coefficient  
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号