首页 | 本学科首页   官方微博 | 高级检索  
     

SCARA机器人的自适应迭代学习轨迹跟踪控制
引用本文:张铁,李昌达,覃彬彬,刘晓刚. SCARA机器人的自适应迭代学习轨迹跟踪控制[J]. 中国机械工程, 2018, 29(14): 1724
作者姓名:张铁  李昌达  覃彬彬  刘晓刚
作者单位:1.华南理工大学 机械与汽车工程学院,广州,5100002.桂林航天工业学院,桂林,541004
基金项目:国家科技重大专项(2015ZX04005006);广东省科技重大专项(2014B090921004,2015B010918002);广州市科技重大项目(201604040009)National Science and Technology Major Project (No. 2015ZX04005006)Guangdong Provincial Science and Technology Major Project (No. 2014B090921004,2015B010918002)
摘    要:为了减小执行重复运动任务机器人的末端位置误差,提出了自适应迭代学习轨迹跟踪控制算法。根据拉格朗日方程得到SCARA机器人的动力学模型,设计了控制力矩的迭代算法,利用Lyapunov函数对该算法的稳定性进行了理论证明,搭建了具有典型机械结构的SCARA机器人实验平台。通过实验验证了自适应迭代学习控制算法能有效减小SCARA机器人的末端位置误差,具有较强的可执行性。

关 键 词:机器人  自适应控制  迭代  轨迹  

Adaptive Iterative Learning Control of Trajectory Tracking of SCARA Robots
ZHANG Tie,LI Changda,QIN Binbin,LIU Xiaogang. Adaptive Iterative Learning Control of Trajectory Tracking of SCARA Robots[J]. China Mechanical Engineering, 2018, 29(14): 1724
Authors:ZHANG Tie  LI Changda  QIN Binbin  LIU Xiaogang
Affiliation:1.School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou,5100002.Guilin University of Aerospace Technology,Guilin,Guangxi,541004
Abstract:In order to reduce the end position errors of robots performing repetitive motion tasks,an adaptive iterative learning control algorithm of trajectory tracking was proposed.The dynamics model of SCARA robot was obtained through Lagrange equation,and the iterative algorithm of control torque was designed.The stability of the algorithm was proved by Lyapunov function.An experimental platform of SCARA robot with typical mechanical structure was built.The experimental results show that the adaptive iterative learning control algorithm effectively reduce the end position errors of the SCARA robot to 1.61% of the original one with strong performability.
Keywords:robot  adaptive control  iteration  trajectory  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国机械工程》浏览原始摘要信息
点击此处可从《中国机械工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号