首页 | 本学科首页   官方微博 | 高级检索  
     

渗透系数反演的CHNN模型方法
引用本文:郭海庆,吴中如,张乾飞. 渗透系数反演的CHNN模型方法[J]. 长江科学院院报, 2001, 18(3): 25-28
作者姓名:郭海庆  吴中如  张乾飞
作者单位:河海大学 水利水电工程学院,江苏 南京 210098
摘    要:利用连续型Hopfield神经网络(Continuous Hopfield Neural Network,简称CHNN)的反馈特性,结合实测资料和数值计算,构建了岩土体渗透系数的人工神经网络反演模型,通过网络神经元状态的变迁而最终稳定于平衡状态,从而得到渗透系数反演优化计算的结果。经实例验证,效果较好。

关 键 词:连续型Hopfield网络  渗透系数  反演  
文章编号:1001-5485(2001)03-0025-04
修稿时间:2000-06-19

Inverse analysis of percolation coefficients by CHNN model
GUO Hai-qing,WU Zhong-ru,Zhang Qian-fei. Inverse analysis of percolation coefficients by CHNN model[J]. Journal of Yangtze River Scientific Research Institute, 2001, 18(3): 25-28
Authors:GUO Hai-qing  WU Zhong-ru  Zhang Qian-fei
Abstract:Based on the inverse characteristics of the continuous Hopfield neural network(C HNN) model,combining with the observed data and numerical calculation results of groundwater level,an artificial neural network inverse analysis model for perco lation coefficients of rock and soil body is established.Through employing the p roperties of self-astringency of net-neural unit to finally trend towards a ba l ance status,an inverse optimal result can be found.It is verified from an illust ration that the computed results are in good agreement with the observed data.
Keywords:continuous Hopfield neural network(CHNN) model  percolation coefficient  inversion
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《长江科学院院报》浏览原始摘要信息
点击此处可从《长江科学院院报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号