首页 | 本学科首页   官方微博 | 高级检索  
     

基于状态空间模型进化算法的全局收敛性分析
引用本文:王鼎湘,李茂军,李雪,成立. 基于状态空间模型进化算法的全局收敛性分析[J]. 计算机应用, 2014, 34(10): 2816-2819. DOI: 10.11772/j.issn.1001-9081.2014.10.2816
作者姓名:王鼎湘  李茂军  李雪  成立
作者单位:长沙理工大学 电气与信息工程学院,长沙 410004
基金项目:国家自然科学基金资助项目
摘    要:基于状态空间模型进化算法(SEA)是一种新颖的实数编码进化算法,在工程优化问题中具有广阔的应用前景。为了完善SEA的理论体系,促进SEA在工程优化问题中的应用研究,利用齐次有限Markov链对SEA的全局收敛性进行分析, 证明了SEA不是全局收敛的。通过限定SEA状态进化矩阵内元素的取值范围,同时引入弹力搜索得到改进型弹力状态空间模型进化算法(MESEA)。分析结果表明,弹力搜索能提高SEA的搜索效率。最后得到了MESEA全局收敛的结论,为算法在工程优化问题中的应用提供了理论依据。

关 键 词:状态空间模型  进化算法  弹力搜索  收敛性  搜索效率
收稿时间:2014-05-06
修稿时间:2014-06-11

Global convergence analysis of evolutionary algorithm based on state-space model
WANG Dingxiang,LI Maojun,LI Xue,CHENG Li. Global convergence analysis of evolutionary algorithm based on state-space model[J]. Journal of Computer Applications, 2014, 34(10): 2816-2819. DOI: 10.11772/j.issn.1001-9081.2014.10.2816
Authors:WANG Dingxiang  LI Maojun  LI Xue  CHENG Li
Affiliation:College of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha Hunan 410004, China
Abstract:Evolutionary Algorithm based on State-space model (SEA) is a new evolutionary algorithm using real strings, and it has broad application prospects in engineering optimization problems. Global convergence of SEA was analyzed by homogeneous finite Markov chain to improve the theoretical system of SEA and promote the application research in engineering optimization problems of SEA. It was proved that SEA is not global convergent. Modified Elastic Evolutionary Algorithm based on State-space model (MESEA) was presented by limiting the value ranges of elements in state evolution matrix of SEA and introducing the elastic search. The analytical results show that search efficiency of SEA can be enhanced by introducing elastic search. The conclusion that MESEA is global convergent is drawn, and it provides theory basis for the application of algorithm in engineering optimization problems.
Keywords:state-space model  evolutionary algorithm  elastic search  convergence  search efficiency
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号