首页 | 本学科首页   官方微博 | 高级检索  
     

小数据集条件下的多态系统贝叶斯网络参数学习
引用本文:肖 蒙,张友鹏. 小数据集条件下的多态系统贝叶斯网络参数学习[J]. 计算机科学, 2015, 42(4): 253-257
作者姓名:肖 蒙  张友鹏
作者单位:兰州交通大学自动化与电气工程学院 兰州730070
基金项目:本文受铁道部科技研究开发计划重点课题(2012X003-B),甘肃省自然科学基金资助
摘    要:针对贝叶斯网络中多父节点条件概率分布参数学习问题,提出了一种适用于多态节点、模型不精确、样本信息不充分情形的参数学习方法.该方法利用因果机制独立假设,分解条件概率分布,使条件概率表的规模表现为父节点个数和状态数的线性形式;利用Leaky Noisy-MAX模型量化了多态系统模型未含因素对参数学习的影响;从小样本数据集中获取模型参数并合成条件概率表.结果表明,该方法能提高参数学习效率与精度.

关 键 词:贝叶斯网络  多态系统  小数据集  因果机制独立  参数学习

Parameters Learning of Bayesian Networks for Multistate System with Small Sample
XIAO Meng and ZHANG You-peng. Parameters Learning of Bayesian Networks for Multistate System with Small Sample[J]. Computer Science, 2015, 42(4): 253-257
Authors:XIAO Meng and ZHANG You-peng
Affiliation:School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China and School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
Abstract:To learn parameters for conditional probability distribution of multi-father nodes,a method was proposed which applys to the multistate nodes in the inaccurate model under the condition of insufficient sample information.Using the assumption of independence of causal interaction,the conditional probability distribution is decomposed and the size of conditional probability table is linear in the numbers of the parent nodes and their states.Using Leaky Noisy-MAX model,the influence of factors not included in the multistate system model can be quantified on the parameters learning.The model parameters extracted from small sample can create conditional probability tables.The results show that the method can improve the efficiency and precision of parameter learning.
Keywords:Bayesian networks  Multistate system  Small sample  Independence of causal interaction  Parameters learning
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号