首页 | 本学科首页   官方微博 | 高级检索  
     

压缩感知目标跟踪
引用本文:郭岩松,杨爱萍,侯正信,何宇清. 压缩感知目标跟踪[J]. 计算机工程与应用, 2011, 47(32): 4-6. DOI: 10.3778/j.issn.1002-8331.2011.32.002
作者姓名:郭岩松  杨爱萍  侯正信  何宇清
作者单位:天津大学 电子信息工程学院,天津 300072
基金项目:国家自然科学基金No.61002027~~
摘    要:视频分析通常在分类或检测等高级任务之前解码并重构视频序列。但是,有时希望只进行视频分析而不暴露敏感信息,例如人员身份。提出了一个能够跟踪目标而不需要重构视频序列的编码方案。根据压缩感知理论,用每帧的少量伪随机投影编码一个视频序列。解码器利用背景消除图像的稀疏性重构前景目标。以粒子滤波器估计的目标位置作为先验知识,可以改进前景目标位置的重构。该编码方案同时具有隐私保护和安全加密功能。

关 键 词:压缩感知  目标跟踪  粒子滤波  重新加权l1最小化  
修稿时间: 

Object tracking using compressive sensing
GUO Yansong,YANG Aiping,HOU Zhengxin,HE Yuqing. Object tracking using compressive sensing[J]. Computer Engineering and Applications, 2011, 47(32): 4-6. DOI: 10.3778/j.issn.1002-8331.2011.32.002
Authors:GUO Yansong  YANG Aiping  HOU Zhengxin  HE Yuqing
Affiliation:School of Electronic Information Engineering,Tianjin University,Tianjin 300072,China
Abstract:In video analysis,it usually needs to decode and reconstruct the video sequence before any higher level processing such as classification or detection.However,sometimes a video analysis needs to be proceeded without revealing sensitive information,e.g.the identity of people.This paper proposes a new encoding scheme which enables object-tracking without reconstructing the video sequence.According to compressive sensing theory,encoding a video sequence into a few pseudo-random projections of each frame is rea...
Keywords:compressive sensing  object tracking  particle filtering  reweighted l1 minimization
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号