首页 | 本学科首页   官方微博 | 高级检索  
     

基于模拟退火遗传算法的模糊分类器参数优化及其应用
引用本文:周越, 相敬林, 杨杰. 基于模拟退火遗传算法的模糊分类器参数优化及其应用[J]. 电子与信息学报, 2001, 23(10): 975-983.
作者姓名:周越  相敬林  杨杰
作者单位:1. 上海交通大学图像处理与模式识别研究所,
2. 西北工业大学航海工程学院,
摘    要:该文从结构和算法上研究了Max-Min模糊神经网络(MMNN),找出了其固有的局限性,相应提出了一系列的改进措施形成改进MMNN算法。为了更好地提高网络的性能,同时考虑到优化算法的收敛速度,本文提出了基于模拟退火遗传算法的网络参数优化方法,通过计算机仿真,证明了该方法是可行的。最后,运用它作为分类器对实际的船舶辐射噪声进行了分类实验,与BP等算法进行了比较,显示出其独特的优越性。

关 键 词:模糊隶属度函数   神经网络   模拟退火算法   遗传算法   分类器
收稿时间:1999-08-06
修稿时间:1999-08-06

THE PARAMETER OPTIMIZATION OF MMNN BASED ON GENETIC ALGORITHM COMBINED WITH SIMULATED ANNEALING AND ITS APPLICATION
Zhou Yue, Xiang Jinglin, Yang Jie. THE PARAMETER OPTIMIZATION OF MMNN BASED ON GENETIC ALGORITHM COMBINED WITH SIMULATED ANNEALING AND ITS APPLICATION[J]. Journal of Electronics & Information Technology, 2001, 23(10): 975-983.
Authors:Zhou Yue  Xiang Jinglin  Yang Jie
Affiliation:Inst. of Image Processing and Pattern Recognition Jiaotong Univ.,Shanghai 200030 China;College of Marine Eng.,Northwestern Polytechnical Univ., Xi an 710072 China
Abstract:In this paper, the structure and algorithm of Max-Min fuzzy neural network (MMNN) are studied in detail. In order to get rid of some intrinsic localization of the method and boost up the capability of the MMNN, a series of steps are presented and the improved project (IMMNN) is gained. With a view to making the capability even much better and compressing the time of the convergence, the op-IMMNN is put forward in which the parameters of IMMNN are optimized by genetic algorithm combined with simulated annealing. In the simulation, the result of op-IMMNN is superior over the conventional MMNN's. Finally, a satisfactory result is also obtained when op-IMMNN is regarded as a classifier to distinguish the types of the ships according to their actual radiated noise. Comparing with the neural network based on the back propagation algorithm, the advantages of the op-IMMNN are fully put up.
Keywords:Fuzzy membership function   Neural network   Simulated annealing algorithm   Genetic algorithm   Classifier
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号