首页 | 本学科首页   官方微博 | 高级检索  
     

基于相关性分析和支持向量机的手部肌电信号动作识别
引用本文:席旭刚, 李仲宁, 罗志增. 基于相关性分析和支持向量机的手部肌电信号动作识别[J]. 电子与信息学报, 2008, 30(10): 2315-2319. doi: 10.3724/SP.J.1146.2007.00499
作者姓名:席旭刚  李仲宁  罗志增
作者单位:杭州电子科技大学机器人研究所 杭州,310018;杭州电子科技大学机器人研究所 杭州,310018;杭州电子科技大学机器人研究所 杭州,310018
基金项目:国家自然科学基金,浙江省科技计划
摘    要:为了有效提取表面肌电信号(SEMG)的特征,该文提出了一种基于相关性分析的改进的特征提取方法。首先用空域相关法对两路SEMG信号进行消噪预处理,然后对处理后的SEMG信号进行四尺度小波变换,并通过相关性分析提取SEMG信号的重要边缘在各尺度上的小波系数,以各尺度上的这些系数的平方和构建六维特征向量输入支持向量机分类器,对手部的多个动作进行分类。实验结果表明,基于相关性分析和小波变换构筑的特征向量结合支持向量机的方法能够以较高识别率区分伸腕、屈腕、展拳、握拳4种动作,能够得到比传统的神经网络分类器更为准确的分类结果。

关 键 词:表面肌电信号;相关性;特征提取;支持向量机
收稿时间:2007-04-03
修稿时间:2007-09-29

SEMG Movement Pattern Recognition of Hand Based on Correlation Analysis and SVM
Xi Xu-Gang, Li Zhong-Ning, Luo Zhi-Zeng. SEMG Movement Pattern Recognition of Hand Based on Correlation Analysis and SVM[J]. Journal of Electronics & Information Technology, 2008, 30(10): 2315-2319. doi: 10.3724/SP.J.1146.2007.00499
Authors:Xi Xu-gang  Li Zhong-ning  Luo Zhi-zeng
Affiliation:Robotics Research Institute, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract:In order to extract effectively the feature of SEMG signal, an improved method of feature extraction based on correlation analysis is proposed. Firstly, the paper decreases the noise included in two channel SEMG signals using spatial correlation filtering. Secondly, the paper analyzes SEMG signal after de-noising with 4-scale wavelet transformation and extract wavelet coefficient of the main fringe by arithmetic of correlation analysis. A 6-dimension eigenvector which is constructed with sum of squares of the wavelet coefficient is inputted SVM. The result shows that four movements (wrist spreads, wrist bends, hand extension, hand grasps) are successfully identified by the method of SVM combined with the eigenvector which is constructed at the condition of correlation analysis and wavelet transformation. The more precise classified results can be get than neural network sorter with this method.
Keywords:Surface ElectroMyoGraphy(SEMG)  Correlation  Feature extraction  Support Vector Machine(SVM)
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号