首页 | 本学科首页   官方微博 | 高级检索  
     

基于t-SNE的脑网络状态观测矩阵降维方法研究
引用本文:董迎朝,王 彬,马洒洒,刘 辉,熊 新,薛 洁. 基于t-SNE的脑网络状态观测矩阵降维方法研究[J]. 计算机工程与应用, 2018, 54(1): 42-47. DOI: 10.3778/j.issn.1002-8331.1608-0250
作者姓名:董迎朝  王 彬  马洒洒  刘 辉  熊 新  薛 洁
作者单位:1.昆明理工大学 信息工程与自动化学院,昆明 6505002.云南警官学院 信息网络安全学院,昆明 650223
摘    要:针对基于功能核磁共振重构的脑网络状态观测矩阵维数过高和无特征的特点,对其降维方法展开研究,给出了基于t-SNE的脑网络状态观测矩阵降维算法,并且利用Python实现了降维及可视化平台。实验结果表明,与目前主流的其他降维算法相比较,使用该方法得到的脑网络状态观测矩阵低维空间的映射点有明显的聚类表现,并且在多个样本上的降维结果显现出一定的规律性,从而证明了该算法的有效性和普适性。

关 键 词:高维数据降维  脑功能网络  脑网络状态观测矩阵  t-SNE算法  

Dimension reduction method research of brain network status observation matrix based on t-SNE
DONG Yingzhao,WANG Bin,MA Sasa,LIU Hui,XIONG Xin,XUE Jie. Dimension reduction method research of brain network status observation matrix based on t-SNE[J]. Computer Engineering and Applications, 2018, 54(1): 42-47. DOI: 10.3778/j.issn.1002-8331.1608-0250
Authors:DONG Yingzhao  WANG Bin  MA Sasa  LIU Hui  XIONG Xin  XUE Jie
Affiliation:1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China2.Faculty of Information Network Security, Yunnan Police Officer Academy, Kunming 650223, China
Abstract:The brain network state observation matrix based on fMRI reconstruction technology is in high dimension and characterless. A dimension reduction method based on t-distributed Stochastic Neighbor Embedding algorithm for this kind of matrix is presented and a platform for the dimension reduction and visualization is built with Python. The experimental results show that compared with popular dimension reduction methods, the low dimension embedding of brain network state observation matrix with this method demonstrates distinct clustering, and the dimension reduction results of different brain network state observation matrix show up some common regularity, which supports the validity and universality of this method.
Keywords:high dimension reduction  functional brain network  brain network state observation matrix  t-SNE algorithm  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号