首页 | 本学科首页   官方微博 | 高级检索  
     

多特征相结合的带噪语音端点检测算法的研究
引用本文:张君昌,姜菲,刘红. 多特征相结合的带噪语音端点检测算法的研究[J]. 计算机工程与应用, 2009, 45(32): 114-116. DOI: 10.3778/j.issn.1002-8331.2009.32.036
作者姓名:张君昌  姜菲  刘红
作者单位:西北工业大学,电子信息学院,西安,710072;西北工业大学,电子信息学院,西安,710072;西北工业大学,电子信息学院,西安,710072
摘    要:提出了一种抗噪声的端点检测新方法。针对谱熵特征对清音的检测性能以及抗噪声性能较差的缺点,结合对清音检测性能较好的短时过零率特征,以及抗噪声性能良好的美尔倒谱距离特征,实现了基于多种特征相结合的抗噪声的语音端点检测。仿真实验表明,该方法能显著提高端点检测在高噪声环境下的检测性能。

关 键 词:高噪声  美尔倒谱距离  谱熵  短时过零率  端点检测
收稿时间:2008-06-17
修稿时间:2008-10-8 

Study on endpoint detection based on multi-characteristic jointed in noisy environment
ZHANG Jun-chang,JIANG Fei,UU Hong. Study on endpoint detection based on multi-characteristic jointed in noisy environment[J]. Computer Engineering and Applications, 2009, 45(32): 114-116. DOI: 10.3778/j.issn.1002-8331.2009.32.036
Authors:ZHANG Jun-chang  JIANG Fei  UU Hong
Affiliation:Department of Electronics and Information,Northwestern Polytechnical University,Xi’an 710072,China
Abstract:This paper proposes a new method of speech endpoint detection in high noisy environment.In order to solve the problem of the less effective detection of surd and the poor anti-noise performance in spectrum entropy characteristic,this paper combines short-time ZCR characteristic which has a better detection of surd with Mel cepstral distance characteristic which has a good anti-noise performance to realize the endpoint detection based on multi-characteristics in high noise environment.The simulation shows that the new method can significantly improve the detection performance in high noise environment.
Keywords:high noise  Mel cepstral distance  spectral entropy  short-time ZCR  endpoint detection
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号