首页 | 本学科首页   官方微博 | 高级检索  
     

基于聚类的小生境克隆选择算法
引用本文:郑士芹,邓凡星. 基于聚类的小生境克隆选择算法[J]. 计算机工程与应用, 2009, 45(33): 25-27. DOI: 10.3778/j.issn.1002-8331.2009.33.009
作者姓名:郑士芹  邓凡星
作者单位:北京信息职业技术学院,计算机工程系,北京,100018;北京信息职业技术学院,计算机工程系,北京,100018
摘    要:基于聚类的小生境克隆选择算法是针对小生境克隆选择算法计算复杂、参数设置困难等缺点而提出的。新算法删除了计算复杂度较大的抑制算子,引入聚类算子,并对算法的部分流程进行了调整。新算法不仅计算复杂度降低,而且无需预知峰的个数等先验知识,仅根据样本数据即可找到全部峰值点。仿真实验验证了C-NCSA的完全收敛性;并且通过与小生境克隆选择算法的对比实验证明:在相同的实验条件下,C-NCSA的执行时间比NCSA明显降低。

关 键 词:人工免疫系统  免疫算法  基于聚类的小生镜克隆选择算法
收稿时间:2009-04-22
修稿时间:2009-7-13 

Cluster based niche clonal selection algorithm
ZHENG Shi-qin,DENG Fan-xing. Cluster based niche clonal selection algorithm[J]. Computer Engineering and Applications, 2009, 45(33): 25-27. DOI: 10.3778/j.issn.1002-8331.2009.33.009
Authors:ZHENG Shi-qin  DENG Fan-xing
Affiliation:Computer Engineering Department,Beijing Information Technology College,Beijing 100018,China
Abstract:Cluster based Niche Clonal Selection Algorithm(C-NCSA) is an improved algorithm for the disadvantages of NCSA, which includes the high computation complex and the difficulties in parameter setting.The restrain-operator with high computation complexity is removed;a cluster operator is imported,and the algorithm flows are reconstructed.Those improvements not only de-crease the computation complexity of C-NCSA sharply,but also make C-NCSA find all the peaks just from the sample data without any foreknown conditions such as the number of the peaks.The simulation tests validate the multi-modal convergence of the C-NCSA,and the contrast tests with the NCSA show that:Compared with the NCSA,the executed time of C-NCSA is re-duced obviously at the same test conditions.
Keywords:artificial immune system  immune algorithm  Cluster-based Niche Clonal Selection Algorithm(C-NCSA)
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号