首页 | 本学科首页   官方微博 | 高级检索  
     

非反向Buck-Boost变换器的多模式定频双向ZVS控制策略
引用本文:贾磊磊,孙孝峰,潘尧,王洪龙,王武博,李昕. 非反向Buck-Boost变换器的多模式定频双向ZVS控制策略[J]. 太阳能学报, 2022, 43(12): 520-530. DOI: 10.19912/j.0254-0096.tynxb.2021-0688
作者姓名:贾磊磊  孙孝峰  潘尧  王洪龙  王武博  李昕
作者单位:1.燕山大学电力电子节能与传动控制河北省重点实验室,秦皇岛 066004; 2.洛阳师范学院物理与电子信息学院,洛阳 471934
基金项目:河北省自然科学基金重点项目(E2021203162); 河北省重点研发计划(19214405D)
摘    要:非反向Buck-Boost变换器在可再生能源发电系统、储能系统等电压变化范围较宽的场合得到广泛应用。传统四边形控制方法,能实现非反向Buck-Boost变换器各开关管的ZVS,但存在如下问题:1)大的电感电流引起的较大的导通损耗;2)各模式之间切换引起的输出电压波动;3)需要离线预先计算,使用多维查找表和线性插值法,无在线检测实时计算的闭环,整体控制复杂。该文提出的多模式定频双向ZVS充放电控制策略,解决了以上3个问题。首先,提出多模式定频ZVS恒压放电控制策略,不需要添加任何额外的有源或无源器件,通过将整个宽输入电压范围分成3个模式,并独立分析每个模式的特点,可增加控制条件以简化计算过程,同时实现各模式的在线实时恒压闭环和通态损耗最小ZVS。无需使用多维查找表和线性插值法,整体控制简单容易实现。其次,提出多模式平滑切换控制策略,可保证在模式切换时各开关管占空比跳变前后,闭环输出始终保持稳定。然后,提出多模式定频ZVS恒流充电控制策略,实现了非反向Buck-Boost变换器的双向ZVS充放电控制。最后,给出各模式区间划分的理论依据和电感参数的计算原理,并搭建500 W的实验样机验证了所提出方案的有效性。

关 键 词:DC-DC变换器  ZVS  移相  数字控制系统  模式切换  储能  
收稿时间:2021-06-18

MULTIMODE CONSTANT FREQUENCY BIDIRECTIONAL ZVS CONTROL STRATEGY FOR NONINVERTING BUCK-BOOST CONVERTER
Jia Leilei,Sun Xiaofeng,Pan Yao,Wang Honglong,Wang Wubo,Li Xin. MULTIMODE CONSTANT FREQUENCY BIDIRECTIONAL ZVS CONTROL STRATEGY FOR NONINVERTING BUCK-BOOST CONVERTER[J]. Acta Energiae Solaris Sinica, 2022, 43(12): 520-530. DOI: 10.19912/j.0254-0096.tynxb.2021-0688
Authors:Jia Leilei  Sun Xiaofeng  Pan Yao  Wang Honglong  Wang Wubo  Li Xin
Affiliation:1. Key Laboratory of Power Electronics for Energy Conservation and Motor Drive of Hebei Province, Yanshan University, Qinhuangdao 066004, China; 2. College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471934, China
Abstract:Noninverting Buck-Boost converters are widely used in renewable energy power generation systems, energy storage systems and other occasions with a wide voltage variation range. The conventional quadrangle control method can realize ZVS of all switches in noninverting Buck-Boost converter, but it has the following problems: 1) the large conduction loss caused by large inductor current; 2) the output voltage fluctuation caused by mode switching; 3) the use of lookup table and linear interpolation makes the calculation amount large and the overall control complex. The proposed multimode constant frequency ZVS control strategy solves the three problems. Firstly, without any additional active or passive components, by dividing the entire wide input voltage range into three modes, after independently analyzing the characteristics of each mode, the control conditions can be added to simplrfy the calculation process, and the online realtime closed-loop and minimum conduction loss ZVS of each mode can be realized at the same time. There is no need to use multi-dimensional lookup table and linear interpolation, and the overall control is simple and easy to achieve. Secondly, a multimode smooth switching control strategy is proposed, which can ensure that the output voltage is always stable before and after the duty cycle of each switch jumps during mode switching. Then, a multimode constant frequency ZVS constant current charging control strategy is proposed to realize bidirectional ZVS charging and discharging control of noninverting Buck-Boost converter. Finally, the theoretical basis for division of each mode and the calculation principle of inductor parameter is provided, and a 500 W experimental prototype is built to verify the effectiveness of the proposed scheme.
Keywords:DC-DC converter  ZVS  phase shift  digital control system  mode switching  energy storage  
点击此处可从《太阳能学报》浏览原始摘要信息
点击此处可从《太阳能学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号