首页 | 本学科首页   官方微博 | 高级检索  
     

基于WD-LSTM的风电机组叶片结冰状态评测
引用本文:刘杰,杨娜,谭玉涛,孙兴伟. 基于WD-LSTM的风电机组叶片结冰状态评测[J]. 太阳能学报, 2022, 43(8): 399-408. DOI: 10.19912/j.0254-0096.tynxb.2021-0505
作者姓名:刘杰  杨娜  谭玉涛  孙兴伟
作者单位:沈阳工业大学机械工程学院,沈阳 110870
基金项目:辽宁省教育厅科学研究经费项目(LQGD2020016); 辽宁省“兴辽英才计划”(XLYC1905003)
摘    要:为有效识别叶片结冰状态,尽早采取除冰措施,提出基于小波去噪的长短期记忆神经网络(WD-LSTM)的评测方法。首先基于过采样与欠采样相结合的方法解决SCADA系统数据中的类别不平衡问题,通过对叶片结冰相关的26项指标进行分析,并从结冰机理和数据探索的角度筛选特征量,小波去噪处理后建立WD-LSTM模型,进一步完成模型的训练和测试。分别以15号和21号风电机组为例进行模型验证,通过与LSTM、概率神经网络(PNN)模型和BP神经网络模型进行对比。结果表明,WD-LSTM方法在风电机组叶片结冰评测中的准确率可达98%,优于其他方法。

关 键 词:风电机组叶片  长短期记忆  状态评测  特征量筛选  小波去噪  结冰状态  
收稿时间:2021-05-11

ASSESSMENT OF ICING STATE OF WIND TURBINE BLADES BASED ON WD-LSTM
Liu Jie,Yang Na,Tan Yutao,Sun Xingwei. ASSESSMENT OF ICING STATE OF WIND TURBINE BLADES BASED ON WD-LSTM[J]. Acta Energiae Solaris Sinica, 2022, 43(8): 399-408. DOI: 10.19912/j.0254-0096.tynxb.2021-0505
Authors:Liu Jie  Yang Na  Tan Yutao  Sun Xingwei
Affiliation:School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
Abstract:An assessment method based on wavelet denoising long short term memory(WD-LSTM) was proposed in the paper to effectively identify the icing state of blades and take deicing measures as soon as possible. The problem of category imbalance in the SCADA system data was solved based on the combination of over-sampling and under-sampling. The 26 indicators related to blade icing were analyzed, and characteristic quantities were selected from the perspective of icing mechanism and data exploration. The WD-LSTM model was established after wavelet denoising to further complete the training and testing of the model. The No. 15 wind turbine and No. 21 wind turbine were taken as examples respectively for model verification compared with LSTM, Probabilistic Neural Network (PNN) model and BP neural network model. The results show that the accuracy rate of the WD-LSTM method reaches 98% in the assessment process of the wind turbine blades, which is better than other methods. It provides new ideas for the prediction of blade icing.
Keywords:wind turbine blades  long short-term memory  state assessment  feature selection  wavelet denoising  icing state  
点击此处可从《太阳能学报》浏览原始摘要信息
点击此处可从《太阳能学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号