首页 | 本学科首页   官方微博 | 高级检索  
     

基于AVMD和WDK的风电齿轮箱轴承复合故障诊断方法研究
引用本文:孔晓佳,孟良,许同乐,袁伟,袁茂军,孙砚飞. 基于AVMD和WDK的风电齿轮箱轴承复合故障诊断方法研究[J]. 太阳能学报, 2022, 43(12): 206-213. DOI: 10.19912/j.0254-0096.tynxb.2021-0778
作者姓名:孔晓佳  孟良  许同乐  袁伟  袁茂军  孙砚飞
作者单位:1.山东理工大学机械工程学院,淄博 255049; 2.淄博职业学院智能制造学院,淄博 255300; 3.山东万通液压股份有限公司,日照 262300
基金项目:国家自然科学基金(51805299); 山东省面上基金(ZR2021ME221)
摘    要:针对强背景噪声下轴承微弱复合故障特征提取困难的问题,提出一种基于自适应变分模态分解(AVMD)和优化的Wasserstein距离指标(WDK)的风电齿轮箱轴承复合故障诊断方法。首先,引入自适应学习粒子群优化算法(ALPSO),以平均包络熵作为ALPSO的适应度函数来搜索变分模态分解的最佳影响参数,从而构造AVMD;其次,结合Wasserstein距离(WD)和峭度优点,提出WDK指标筛选有效模态分量,并对筛选的有效模态分量进行重构;然后,通过对重构信号进行包络谱分析实现轴承复合故障的诊断;最后,将所提AVMD-WDK方法应用于某风场2 MW风电齿轮箱轴承振动信号的故障诊断。结果表明,该方法能有效提取轴承的微弱故障特征,实现轴承复合故障的精确诊断。

关 键 词:风电机组  复合故障  齿轮箱  自适应变分模态分解  优化的Wasserstein距离指标(WDK)  
收稿时间:2021-07-06

RESEARCH ON BEARING COMPOUND FAULT DIAGNOSIS METHODS BASED ON AVMD AND WDK FOR WIND TURBINE GEARBOX
Kong Xiaojia,Meng Liang,Xu Tongle,Yuan Wei,Yuan Maojun,Sun Yanfei. RESEARCH ON BEARING COMPOUND FAULT DIAGNOSIS METHODS BASED ON AVMD AND WDK FOR WIND TURBINE GEARBOX[J]. Acta Energiae Solaris Sinica, 2022, 43(12): 206-213. DOI: 10.19912/j.0254-0096.tynxb.2021-0778
Authors:Kong Xiaojia  Meng Liang  Xu Tongle  Yuan Wei  Yuan Maojun  Sun Yanfei
Affiliation:1. School of Mechanical Engineering, Shandong University of Technology, Zibo 255049, China; 2. School of Intelligent Manufacturing, Zibo Vocational Institute, Zibo 255300, China; 3. Shandong Wantong Hydraulic Co., Ltd., Rizhao 262300, China
Abstract:In order to solve the difficulty of bearing weak compound fault feature extraction under strong background noise, a bearing compound fault diagnosis method based on AVMD and WDK for wind turbine gearbox is proposed in this paper. Firstly, an adaptive learning particle swarm optimization (ALPSO) algorithm is introduced, and the average envelope entropy is adopted as the fitness function of ALPSO to search for the optimal influence parameters of the variational mode decomposition, thus the adaptive variational mode decomposition (AVMD) is constructed. Secondly, the Wasserstein distance kurtosis(WDK) index is proposed to screen the effective modal components combining the advantages of Wasserstein distance and kurtosis, and the selected effective modal components are reconstructed. Thirdly, the reconstructed signal is analyzed through envelope spectrum analysis to realize the bearing compound fault diagnosis. Finally, the AVMD-WDK method is applied to the bearing fault diagnosis for a 2 MW wind turbine gearbox in a wind field. The experimental results show that the proposed method can effectively extract the weak fault features of bearings and realize the bearing compound fault diagnosis accurately.
Keywords:wind turbine  compound fault  gearbox  adaptive variational mode decomposition  Wasserstein distance kurtosis  
点击此处可从《太阳能学报》浏览原始摘要信息
点击此处可从《太阳能学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号