首页 | 本学科首页   官方微博 | 高级检索  
     

具有时变全状态约束的非线性随机切换系统的自适应神经网络控制
引用本文:李争,刘磊,刘艳军. 具有时变全状态约束的非线性随机切换系统的自适应神经网络控制[J]. 广东工业大学学报, 2022, 39(5): 127-136. DOI: 10.12052/gdutxb.220040
作者姓名:李争  刘磊  刘艳军
作者单位:辽宁工业大学 理学院,辽宁 锦州 121001
基金项目:国家自然科学基金资助项目(62173173);辽宁省“兴辽英才计划”青年拔尖人才资助项目 (XLYC1907050)
摘    要:基于任意切换规则,以一类非线性不确定随机切换系统为研究对象,提出了一种具有时变全状态约束的自适应神经网络控制方案。在控制研究的过程中,采用神经网络对系统中的不确定项进行逼近处理。为了解决系统的约束问题,采用坐标变换技术,保证系统的所有状态均在约束界内,给出了闭环系统稳定性和收敛性的充分判据。最后的仿真实验表明所提出的控制策略能够达到较好的控制效果。本文所设计的控制策略大大提高了系统工作时的安全性。

关 键 词:随机切换  坐标变换  约束控制  非线性系统
收稿时间:2022-03-02

Adaptive Neural Network Control for Nonlinear Stochastic Switched Systems with Time-varying Full State Constraints
Li Zheng,Liu Lei,Liu Yan-jun. Adaptive Neural Network Control for Nonlinear Stochastic Switched Systems with Time-varying Full State Constraints[J]. Journal of Guangdong University of Technology, 2022, 39(5): 127-136. DOI: 10.12052/gdutxb.220040
Authors:Li Zheng  Liu Lei  Liu Yan-jun
Affiliation:College of Science, Liaoning University of Technology, Jinzhou 121001, China
Abstract:Based on arbitrary switching rules, an adaptive neural network control scheme with time-varying full state constraints is proposed for a class of nonlinear uncertain stochastic switching systems. In the process of control research, neural network is used to approximate the uncertain items in the system. In order to solve the constraint problem of the system, the coordinate transformation technology is used to ensure that all states of the system are within the constraint boundary, and the sufficient criteria for the stability and convergence of the closed-loop system are given. Finally, the simulation results show that the control strategy proposed in this research can achieve better control effect. The control strategy designed here can greatly improve the security of the system.
Keywords:stochastic switched  coordinate transformation  constrained control  nonlinear system  
点击此处可从《广东工业大学学报》浏览原始摘要信息
点击此处可从《广东工业大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号