首页 | 本学科首页   官方微博 | 高级检索  
     

考虑风电不确定性的风电场参与调频市场投标策略
引用本文:杨锡运,刘雅欣,马文兵,邢国通,高峰. 考虑风电不确定性的风电场参与调频市场投标策略[J]. 浙江大学学报(工学版), 2022, 56(4): 736-744. DOI: 10.3785/j.issn.1008-973X.2022.04.013
作者姓名:杨锡运  刘雅欣  马文兵  邢国通  高峰
作者单位:1. 华北电力大学 控制与计算机工程学院,北京 1022062. 中国核电工程有限公司郑州分部,河南 郑州 450052
基金项目:国家自然科学基金资助项目(51677067)
摘    要:针对风电大规模并网将增加电网调频需求的问题,提出考虑风电不确定性的风电机组同时参与能量市场与调频市场的日前投标方法.分析风电场在2种市场中的收益机制,在调频市场收益中考虑调频性能指标(FRPI),提出调频性能指标的估值方法. 分析风电场参与2种市场的投标策略. 利用核极限学习机(KELM)和核密度估计(KDE),建立风电功率概率预测模型KELM-PSO-KDE.基于功率概率密度的预测结果,以风电场收益最大为目标函数建立优化模型,利用蚁狮优化(ALO)算法求解该模型,得到风电场同时参与2种市场的日前最优投标功率. 风电场真实数据的仿真表明,提出的风电场同时参与2种市场的投标策略,可以使风场侧获得更大收益,有助于缓解电网的调频压力,具有优越性和普适性.

关 键 词:风电  能量市场  调频市场  风功率预测  投标策略  蚁狮优化算法  调频性能指标(FRPI)  

Bidding strategy of wind farm participation in frequency regulation market considering wind power uncertainty
Xi-yun YANG,Ya-xin LIU,Wen-bing MA,Guo-tong XING,Feng GAO. Bidding strategy of wind farm participation in frequency regulation market considering wind power uncertainty[J]. Journal of Zhejiang University(Engineering Science), 2022, 56(4): 736-744. DOI: 10.3785/j.issn.1008-973X.2022.04.013
Authors:Xi-yun YANG  Ya-xin LIU  Wen-bing MA  Guo-tong XING  Feng GAO
Abstract:The day-ahead bidding method of wind farms participation in the energy market and frequency regulation (FR) market was proposed in order to solve the problem that large-scale wind power integration on power system can increase the FR demand of the power system. The revenue mechanisms of wind farms in the energy market and FR market were analyzed. The frequency regulation performance index (FRPI) was considered in the FR market revenue, and the evaluation method of FRPI was proposed. The bidding strategy of wind farms participating in the energy and FR (E&FR) markets was analyzed. The wind power probability density prediction model KELM-PSO-KDE was established by using the kernel extreme learning machine (KELM) and the kernel density estimation (KDE). An optimization model for the wind farm participating in the E&FR markets was established with the goal of maximizing the wind farm revenue based on the probability density prediction results of wind power. The ant lion optimizer (ALO) algorithm was used to solve the optimization model in order to obtain the day-ahead optimal bidding power for the wind farm participating in the E&FR markets. The simulation results based on the actual wind farm data show that the bidding strategy for wind farms in the E&FR markets can help wind farms to obtain more revenue, and help the power system to relieve the FR pressure. The bidding strategy has more advantages and universality.
Keywords:wind power  energy market  frequency regulation market  wind power prediction  bidding strategy  ant lion optimizer algorithm  frequency regulation performance index (FRPI)  
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号