首页 | 本学科首页   官方微博 | 高级检索  
     

基于图卷积模仿学习的分布式群集控制
引用本文:郭策,曾志文,朱鹏铭,周智千,卢惠民. 基于图卷积模仿学习的分布式群集控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1055-1061. DOI: 10.3785/j.issn.1008-973X.2022.06.001
作者姓名:郭策  曾志文  朱鹏铭  周智千  卢惠民
作者单位:国防科技大学 智能科学学院,湖南 长沙 410073
基金项目:国家自然科学基金资助项目(U1913202, U1813205)
摘    要:针对受限通信条件下机器人群集协同控制问题,提出基于图卷积模仿学习的分布式群集控制策略. 该策略旨在实现群集内避障、速度一致性的基础上,提高群集鲁棒性,提升避免群集分裂的成功率. 提出基于熵评价的群集鲁棒性量化评价指标,建立节点和链路重要性的均衡分布与群集鲁棒性的联系. 提出重要度相关图卷积网络,用于实现受限通信条件下非欧氏数据的特征提取和加权聚合. 采用图卷积模仿学习方法,根据提升群集鲁棒性的要求设计集中式专家策略,通过对集中式专家策略的模仿,得到分布式群集协同控制策略. 设计仿真实验,证明所得的分布式策略基于受限通信条件实现了接近集中式的专家策略的控制效果.

关 键 词:机器人群集  图卷积网络  模仿学习  鲁棒性  图重要度熵  

Decentralized swarm control based on graph convolutional imitation learning
Ce GUO,Zhi-wen ZENG,Peng-ming ZHU,Zhi-qian ZHOU,Hui-min LU. Decentralized swarm control based on graph convolutional imitation learning[J]. Journal of Zhejiang University(Engineering Science), 2022, 56(6): 1055-1061. DOI: 10.3785/j.issn.1008-973X.2022.06.001
Authors:Ce GUO  Zhi-wen ZENG  Peng-ming ZHU  Zhi-qian ZHOU  Hui-min LU
Abstract:A distributed swarm control strategy based on graph convolutional imitation learning was proposed to deal with the cooperative control of robot swarms under restricted communication conditions. The strategy aimed to improve swarm robustness and enhance the success rate of avoiding swarm splitting based on achieving intra-swarm obstacle avoidance and velocity consistency. A quantitative evaluation index of swarm robustness based on entropy evaluation was proposed to establish the connection between the balanced distribution of node and link importance and cluster robustness. The importance-correlated graph convolutional networks were proposed to realize feature extraction and weighted aggregation of non-Euclidean data under restricted communication conditions. A centralized expert strategy was designed to improve swarm robustness, and the graph convolutional imitation learning method was adopted. Furthermore, a distributed swarm cooperative control strategy was obtained by imitating the centralized expert strategy. Simulation experiments demonstrate that the resulting distributed strategy achieves control effects close to those of the centralized expert strategy based on restricted communication conditions.
Keywords:robot swarm  graph convolutional network  imitation learning  robustness  graph importance entropy  
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号