首页 | 本学科首页   官方微博 | 高级检索  
     

基于双隶属度模糊支持向量机的邮件过滤
引用本文:孙名松,高庆国,王宣丹. 基于双隶属度模糊支持向量机的邮件过滤[J]. 计算机工程与应用, 2010, 46(2): 93-95. DOI: 10.3778/j.issn.1002-8331.2010.02.029
作者姓名:孙名松  高庆国  王宣丹
作者单位:哈尔滨理工大学 计算机科学与技术学院,哈尔滨 150080
摘    要:针对邮件所含信息的模糊性和合法邮件与垃圾邮件错分代价的不对称性提出了基于双隶属度模糊支持向量机的邮件过滤方法,通过对每个样本赋予不同的双隶属度,得到最优分类器,提高了邮件过滤的正确率。经仿真实验证明,该方法能够有效降低将合法邮件误判为垃圾邮件,而且有很高的正确率等特点。

关 键 词:垃圾邮件过滤  模糊支持向量机  隶属度  双隶属度模糊支持向量机  
收稿时间:2008-07-25
修稿时间:2008-10-13 

Mail filtering by dual membership fuzzy support vector machine.
SUN Ming-song,GAO Qing-guo,WANG Xuan-dan. Mail filtering by dual membership fuzzy support vector machine.[J]. Computer Engineering and Applications, 2010, 46(2): 93-95. DOI: 10.3778/j.issn.1002-8331.2010.02.029
Authors:SUN Ming-song  GAO Qing-guo  WANG Xuan-dan
Affiliation:College of Computer Science & Technology,Harbin University of Science and Technology,Harbin 150080,China
Abstract:Based on fuzzy of information contained in mail and asymmetry of legitimate mails and spam at the misjudgment price,a mail filtering method is proposed.It makes use of dual membership fuzzy support vector machine.According to provide a different pair of membership for each sample,the optimal classifier is derived.It improves the accuracy of mail filtering.The simu-lation results show that the method is able to effectively reduce the misjudgment of legitimate messages as spam.In additional,it has a high accu...
Keywords:spam filtering  fuzzy support vector machine  membership  dual membership fuzzy support vector machine
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号