首页 | 本学科首页   官方微博 | 高级检索  
     

基于傅里叶分解方法的航空发动机转子故障诊断
引用本文:刘洋,刘晓波,梁珊. 基于傅里叶分解方法的航空发动机转子故障诊断[J]. 中国机械工程, 2019, 30(18): 2156
作者姓名:刘洋  刘晓波  梁珊
作者单位:南昌航空大学航空制造工程学院,南昌,330063
基金项目:国家自然科学基金资助项目(51365040);航空科学基金资助项目(2013ZD56009);江西省自然科学基金资助项目(20151BAB206060)
摘    要:针对传统时频分析法无法提取转子故障特征信息的问题,提出了基于傅里叶分解方法(FDM)的转子碰摩故障诊断方法。构造了调频调幅仿真信号,对比FDM、集合经验模态分解(EEMD)、变分模态分解(VMD)的分解结果发现,FDM能够实现仿真信号的完备性分解,且时频分辨率高。利用FDM对采集到的转子试验器机匣单点-转子全周碰摩试验故障数据进行诊断,不同算法故障信号分解结果的周期功率谱密度估计和故障特征提取结果表明,该方法具有更高的诊断可靠性,可有效地解决转子故障诊断问题。

关 键 词:航空发动机  时频分析  傅里叶分解方法  转子碰摩  故障诊断  

Aeroengine Rotor Fault Diagnosis Based on Fourier Decomposition Method
LIU Yang,LIU Xiaobo,LIANG Shan. Aeroengine Rotor Fault Diagnosis Based on Fourier Decomposition Method[J]. China Mechanical Engineering, 2019, 30(18): 2156
Authors:LIU Yang  LIU Xiaobo  LIANG Shan
Affiliation:School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang, 330063
Abstract:Aiming at the problems that the traditional time-frequency analysis method might not effectively extract rotor fault feature informations, a fault diagnosis method was proposed based on FDM for rotor rubbing. Firstly, frequency modulation and amplitude modulation simulation signals were constructed. The signal decomposition results of methods such as EEMD, VMD, and FDM were contrastively analyzed. The FDM may achieve complete decomposition of the simulated signals, and get a high time-frequency resolution. Finally, the FDM was used to analyze the fault sample data of the single-point on casing and whole-cycle on rotor rubbing tests of the collected rotor tester. Comparing the periodic power spectrum density estimation and fault feature extraction results of different algorithm fault signal decomposition results, the method proposed herein has higher diagnostic reliability, and effectively solves the rotor fault diagnosis problems.
Keywords:aeroengine  time-frequency analysis;Fourier decomposition method(FDM);rotor rubbing;fault diagnosis  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国机械工程》浏览原始摘要信息
点击此处可从《中国机械工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号