首页 | 本学科首页   官方微博 | 高级检索  
     

改进蚁群算法在装备保障路径选择中的应用
引用本文:陈曼青,武子荣,崔伟宁,常婷婷. 改进蚁群算法在装备保障路径选择中的应用[J]. 计算机与现代化, 2015, 0(11): 113. DOI: 10.3969/j.issn.1006-2475.2015.11.024
作者姓名:陈曼青  武子荣  崔伟宁  常婷婷
摘    要:目前,保障单位在进行装备保障的资源调配时很多都是基于人工决策的,根据经验选择路径,形成保障方案,这存在决策不科学、路径不最优、方案不合理等方面的不足。根据上述状况,利用蚁群算法试验不同的参数值,提出最佳解决方案,对资源调配中的路径进行优化选择,改进基本蚁群算法。实验结果表明,利用改进的蚁群算法进行路径优化确实能够减少时延,提高效率。

关 键 词:装备保障   蚁群算法   资源调配   路径优化   算法改进  
收稿时间:2015-11-16

Application of Improved Ant Colony Optimization Algorithm in Equipment Support Route Selection
CHEN Man-qing,WU Zi-rong,CUI Wei-ning,CHANG Ting-ting. Application of Improved Ant Colony Optimization Algorithm in Equipment Support Route Selection[J]. Computer and Modernization, 2015, 0(11): 113. DOI: 10.3969/j.issn.1006-2475.2015.11.024
Authors:CHEN Man-qing  WU Zi-rong  CUI Wei-ning  CHANG Ting-ting
Abstract:At present, many of supporting units are based on artificial decision when they deployed resources of equipment support. Using the experience, route is chosen and a security scheme is formed. But artificial decision-making is not scientific, the path is not optimal and the scheme is unreasonable. According to the above conditions, this paper uses ant colony algorithm to experiment with different parameter values, and puts forward the best solution, optimizes route selection in the allocation of resources, then improves the basic ant colony algorithm. The experimental comparison results show that the improved ant colony algorithm can reduce the delay and improve the efficiency of the route optimization.
Keywords:equipment support  ant colony algorithm  resource allocation  route optimization  algorithm improvement
  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号