首页 | 本学科首页   官方微博 | 高级检索  
     

混合值不完备决策信息系统的粗糙分类方法
引用本文:黄恒秋,曾玲. 混合值不完备决策信息系统的粗糙分类方法[J]. 计算机工程与应用, 2011, 47(28): 48-51. DOI: 10.3778/j.issn.1002-8331.2011.28.012
作者姓名:黄恒秋  曾玲
作者单位:桂林电子科技大学 数学与计算科学学院,广西 桂林 541004
基金项目:广西研究生教育创新计划资助项目(No.2010105950701M29)
摘    要:针对混合值不完备决策信息系统,提出一种将邻域联系度粗糙集与贝叶斯理论相结合的分类方法。定义了一种新的属性辨识矩阵——同异反辨识矩阵,给出了基于同异反辨识矩阵的t分配约简算法,以及对约简后的决策信息系统建立基于邻域联系度粗糙集的最小错误率贝叶斯决策准则,用于对含有混合属性值以及不完备数据的对象进行分类。实验表明所提出的方法是客观有效的。

关 键 词:粗糙集  邻域联系度  同异反辨识矩阵  分配约简  贝叶斯理论  
修稿时间: 

Rough classification method in incomplete decision information system with hybrid value
HUANG Hengqiu,ZENG Ling. Rough classification method in incomplete decision information system with hybrid value[J]. Computer Engineering and Applications, 2011, 47(28): 48-51. DOI: 10.3778/j.issn.1002-8331.2011.28.012
Authors:HUANG Hengqiu  ZENG Ling
Affiliation:School of Mathematics and Computing Science,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China
Abstract:A classification method is presented based on the combination of neighborhood connection degree rough set and Bayesian theory in incomplete decision information system with hybrid value.A new attribute discernibility matrix--identical- discrepancy-contrary discernibility matrix is defined, t-assignment reduction algorithm based on identical-discrepancy-contrary discernibility matrix is proposed.In addition, a Bayesian decision criterion of minimum error rate based on neighborhood connection degree rough set is established to classify the object with hybrid attribute value and incomplete data in reduction decision information system.Experiments show that new method is objective and feasible.
Keywords:rough set  neighborhood connection degree  identical-discrepancy-contrary discernibility matrix  assignment reduction  Bayesian theory
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号