首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的多目标混合遗传算法及应用
引用本文:唐天兵,申文杰,韦凌云,谢祥宏. 一种改进的多目标混合遗传算法及应用[J]. 计算机工程与应用, 2010, 46(22): 242-244. DOI: 10.3778/j.issn.1002-8331.2010.22.070
作者姓名:唐天兵  申文杰  韦凌云  谢祥宏
作者单位:1.广西大学 计算机与电子信息学院,南宁 530004 2.北京邮电大学 自动化学院,北京 100876
摘    要:在NSGA-II算法中引入自适应交叉算子和自适应变异算子,将模拟退火算法与改进的NSGA-II算法相结合,并应用到武器装备供应合同商的选择与评价中。实验结果表明,非劣解在目标空间分布均匀,算法收敛性好,为求解武器装备供应合同商选择的多目标问题提供了一种有效的工具。

关 键 词:多目标优化  遗传算法  模拟退火  合同商选择  
收稿时间:2009-01-08
修稿时间:2009-3-19 

Improved multi-objective hybrid genetic algorithm and its application
TANG Tian-bing,SHEN Wen-jie,WEI Ling-yun,XIE Xiang-hong. Improved multi-objective hybrid genetic algorithm and its application[J]. Computer Engineering and Applications, 2010, 46(22): 242-244. DOI: 10.3778/j.issn.1002-8331.2010.22.070
Authors:TANG Tian-bing  SHEN Wen-jie  WEI Ling-yun  XIE Xiang-hong
Affiliation:1.School of Computer,Electronics and Information,Guangxi University,Nanning 530004,China 2.School of Automation,Beijing University of Posts and Telecommunications,Beijing 100876,China
Abstract:After improving NSGA-II by importing adaptive crossover and mutation operators,this paper combines it with the simulation annealing algorithm and then applies them to the problem of choice and valuation of the supply contractors of weaponry equipment.The pareto solutions are distributed uniformly and the algorithm shows nice convergence through the ex- perimental result.So it provides an efficient tool for solving the multi-objective problem of choosing the contractors of weaponry supplies.
Keywords:multi-objective optimization  genetic algorithm  simulated annealing  contractors selection
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号