首页 | 本学科首页   官方微博 | 高级检索  
     


Real-Time Violent Action Recognition Using Key Frames Extraction and Deep Learning
Authors:Muzamil Ahmed  Muhammad Ramzan  Hikmat Ullah Khan  Saqib Iqbal  Muhammad Attique Khan  Jung-In Choi  Yunyoung Nam  Seifedine Kadry
Abstract:Violence recognition is crucial because of its applications in activities related to security and law enforcement. Existing semi-automated systems have issues such as tedious manual surveillances, which causes human errors and makes these systems less effective. Several approaches have been proposed using trajectory-based, non-object-centric, and deep-learning-based methods. Previous studies have shown that deep learning techniques attain higher accuracy and lower error rates than those of other methods. However, the their performance must be improved. This study explores the state-of-the-art deep learning architecture of convolutional neural networks (CNNs) and inception V4 to detect and recognize violence using video data. In the proposed framework, the keyframe extraction technique eliminates duplicate consecutive frames. This keyframing phase reduces the training data size and hence decreases the computational cost by avoiding duplicate frames. For feature selection and classification tasks, the applied sequential CNN uses one kernel size, whereas the inception v4 CNN uses multiple kernels for different layers of the architecture. For empirical analysis, four widely used standard datasets are used with diverse activities. The results confirm that the proposed approach attains 98% accuracy, reduces the computational cost, and outperforms the existing techniques of violence detection and recognition.
Keywords:Violence detection  violence recognition  deep learning  convolutional neural network  inception v4  keyframe extraction
点击此处可从《计算机、材料和连续体(英文)》浏览原始摘要信息
点击此处可从《计算机、材料和连续体(英文)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号