首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊粗糙集依赖度的两步属性约简方法
引用本文:王世强, 张登福, 毕笃彦, 张立东. 基于模糊粗糙集依赖度的两步属性约简方法[J]. 北京工业大学学报, 2013, 39(6): 828-834.
作者姓名:王世强  张登福  毕笃彦  张立东
作者单位:1.1. 空军工程大学 工程学院, 西安 710038
基金项目:国家自然科学基金资助项目,航空科学基金资助项目
摘    要:为获取连续属性值数据集的最小属性子集,提出了一种两步约简方法.该方法以模糊粗糙集模型为基础,将描述条件属性和决策属性依赖关系的模糊依赖度概念进行了扩展,使其能对条件属性之间的依赖关系进行度量,利用属性与类别之间的依赖度选出候选属性集,然后根据单个属性与类别和属性之间的依赖度对候选属性集进行约简.仿真结果表明,该方法在有效降低属性维数的同时一定程度上保证了分类正确率.

关 键 词:属性约简  粗糙集理论  模糊粗糙集  模糊等价关系  隶属函数  依赖度
收稿时间:2011-12-28

Two-step Attribute Reduction Method Based on Fuzzy Rough Sets Dependency
WANG Shi-qiang, ZHANG Deng-fu, BI Du-yan, ZHANG Li-dong. Two-step Attribute Reduction Method Based on Fuzzy Rough Sets Dependency[J]. Journal of Beijing University of Technology, 2013, 39(6): 828-834.
Authors:WANG Shi-qiang  ZHANG Deng-fu  BI Du-yan  ZHANG Li-dong
Affiliation:1.1. Institute of Engineering, Air Force Engineering University, Xi’an 710038, China
Abstract:To acquire the minimum attribute reduction of the dataset with continual attribute value,a two-step reduction method is proposed based on fuzzy rough sets.The concept of dependency is extended and the dependency relationship between condition attributes can be measured on the basis of the extended concept.The candidate attributes are first selected by calculating the attribute importance.Then,the candidate attributes are reduced using the dependency between attributes and of the single attribute importance.The redundant attribute is reduced via this operation.Experimental results show that the strategy can efficiently reduce the attribute dimension without sacrificing the classification accuracy.
Keywords:attribute reduction  rough set theory  fuzzy rough sets  fuzzy equivalence relationship  membership function  dependency
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京工业大学学报》浏览原始摘要信息
点击此处可从《北京工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号