首页 | 本学科首页   官方微博 | 高级检索  
     

采用U-Net卷积网络的桥梁裂缝检测方法
引用本文:朱苏雅,杜建超,李云松,汪小鹏. 采用U-Net卷积网络的桥梁裂缝检测方法[J]. 西安电子科技大学学报(自然科学版), 2019, 46(4): 35-42. DOI: 10.19665/j.issn1001-2400.2019.04.006
作者姓名:朱苏雅  杜建超  李云松  汪小鹏
作者单位:1.西安电子科技大学 综合业务网理论及关键技术国家重点实验室,陕西 西安 7100712.西安公路研究院,陕西 西安 710065
基金项目:国家自然科学基金(61372069)
摘    要:针对传统的桥梁裂缝检测准确性不高、丢失细节信息、宽度信息获取困难等问题,提出一种采用U-Net卷积网络的像素级、小样本的裂缝检测方法。该方法使用多层卷积自动提取裂缝特征,并利用浅层网络与深层网络叠加的方法实现裂缝局部特征与抽象特征的融合,从而保留裂缝细节特征,使得检测准确性大大提升。对检测结果中出现的背景杂波和伪裂缝,采用阈值法和改进的迪杰斯特拉连接算法来实现裂缝的精细提取。最后,采用八方向搜索法实现裂缝宽度的精确测量。实验证明,所提方法能准确、完整地对桥梁裂缝进行提取,宽度测量准确,可以满足应用需求。

关 键 词:图像处理  桥梁裂缝检测  卷积神经网络  U-Net网络  
收稿时间:2019-03-20

Method for bridge crack detection based on the U-Net convolutional networks
ZHU Suya,DU Jianchao,LI Yunsong,WANG Xiaopeng. Method for bridge crack detection based on the U-Net convolutional networks[J]. Journal of Xidian University, 2019, 46(4): 35-42. DOI: 10.19665/j.issn1001-2400.2019.04.006
Authors:ZHU Suya  DU Jianchao  LI Yunsong  WANG Xiaopeng
Affiliation:1.State Key Lab. of Integrated Service Networks, Xidian Univ., Xi’an 710071, China2.Xi’an Highway Research Institute, Xi’an 710065,China
Abstract:In order to improve the accuracy of bridge crack detection, retain details, and get information on the crack width, the paper proposes a pixel-wise and small sample crack detection method by using U-Net convolutional neural networks. The method uses a U-Net network to extract crack features automatically by using multi-layer convolutions, and uses the superposition of the shallow network and deep network to realize the fusion of local features and abstract features of cracks. This method can retain the details of cracks and greatly improve the accuracy of detection. In order to refine the detection results, the paper presents the threshold method and an improved Dijkstra minimum spanning tree algorithm for eliminating noise and pseudo cracks. Finally, an eight-direction searching method is applied to measure the width of cracks in pixels. Experiments prove that the proposed method can accurately and completely detect bridge cracks and measure the width, which can meet the application requirements.
Keywords:image processing  bridge cracks detection  convolutional neural networks  U-Net network  
点击此处可从《西安电子科技大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《西安电子科技大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号