首页 | 本学科首页   官方微博 | 高级检索  
     

非线性动力方程的精细时空有限元方法
引用本文:江小燕, 王建国. 非线性动力方程的精细时空有限元方法[J]. 工程力学, 2014, 31(1): 23-28. DOI: 10.6052/j.issn.1000-4750.2012.09.0664
作者姓名:江小燕  王建国
作者单位:合肥工业大学土木与水利工程学院,合肥 230009
摘    要:根据Hamilton变作用定律构造了时空有限元矩阵;并根据传递矩阵原理,利用时间的一维性将时空有限元矩阵变换为时间方向的传递矩阵,将初值问题转化为一般矩阵相乘问题以方便求解。为了保证计算的稳定性,参考了精细积分的思想提出精细时空有限元方法,并给出线性问题在时间级数荷载作用下的计算式。数值分析结果证明该方法在线性问题分析上非常准确并可以推广到非线性动力方程的求解;只需将非线性解看作初始解和增量解的叠加,通过精细时空有限元线性求解方法计算增量解,逐步修正后即可得到非线性解。结果表明该方法是一个有效的求解非线性动力方程的方法。

关 键 词:非线性动力方程  Hamilton变作用定律  时空有限元  精细方法  传递矩阵
收稿时间:2012-09-12

THE PRECISE SPACE-TIME FINITE ELEMENT METHOD FOR NONLINEAR DYNAMIC EQUATION
JIANG Xiao-yan, WANG Jian-guo. THE PRECISE SPACE-TIME FINITE ELEMENT METHOD FOR NONLINEAR DYNAMIC EQUATION[J]. Engineering Mechanics, 2014, 31(1): 23-28. DOI: 10.6052/j.issn.1000-4750.2012.09.0664
Authors:JIANG Xiao-yan  WANG Jian-guo
Affiliation:School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
Abstract:Based on the Hamilton variable action law, a space-time finite element is deduced. According to the principle of a transfer matrix and one-dimensionality of time, a space-time finite element matrix is transformed to a time-transfer matrix and initial value problems are converted to matrix multiplication problems so as to be solved more easily. In order to ensure the stability of the calculation, the precise space-time finite element method is established on the basis of the precise integration idea, and the calculation formula under the action of series loads is presented. The results of numerical analysis on a linear problem show that this method is very accurate and can be extended to nonlinear dynamic problems. Firstly, regarded a nonlinear solution as a superposition of an initial solution and an incremental solution, and then to calculate the incremental solution using a precise space-time finite element linear solution method, to modify solution gradually, the nonlinear solution can be achieved finally. The results of numerical experiments show that this method is a stable and efficient calculation method on solving nonlinear dynamic problems.
Keywords:nonlinear dynamic equation  Hamilton variable action law  space-time finite element  precise method  transfer matrix
本文献已被 CNKI 等数据库收录!
点击此处可从《工程力学》浏览原始摘要信息
点击此处可从《工程力学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号