首页 | 本学科首页   官方微博 | 高级检索  
     

基于商品特征的个性化推荐算法
引用本文:李峰,李军怀,王瑞林,张璟. 基于商品特征的个性化推荐算法[J]. 计算机工程与应用, 2007, 43(17): 194-197
作者姓名:李峰  李军怀  王瑞林  张璟
作者单位:西安理工大学,计算机科学与工程学院,西安,710048;西安理工大学,计算机科学与工程学院,西安,710048;西安理工大学,计算机科学与工程学院,西安,710048;西安理工大学,计算机科学与工程学院,西安,710048
基金项目:国家高技术研究发展计划(863计划) , 陕西省自然科学基金
摘    要:针对现有个性化商品推荐算法精度不高、新商品不能及时推荐等缺点,提出了一种基于商品特征、用户购买日志及用户实时浏览行为的个性化推荐算法。算法首先根据客户的在线浏览情况获取当前客户的购买倾向,然后将客户的购买日志与商品特征数据库进行对比分析,获得客户对商品特征的偏爱度及推荐参照组,依据特征实体的相似度矩阵进行特征推荐组推荐,最后结合当前的购买倾向向客户推荐商品。

关 键 词:商品特征  个性化推荐  偏爱度  相似度
文章编号:1002-8331(2007)17-0194-04
修稿时间:2007-01-01

Personalized recommendation algorithm based on product features
LI Feng,LI Jun-huai,WANG Rui-lin,ZHANG Jing. Personalized recommendation algorithm based on product features[J]. Computer Engineering and Applications, 2007, 43(17): 194-197
Authors:LI Feng  LI Jun-huai  WANG Rui-lin  ZHANG Jing
Affiliation:School of Computer Science and Engineering,Xi’an University of Technology,Xi’an 710048,China
Abstract:In the field of personalized recommendation,current algorithms have the disadvantages of lower precision and deficiency on recommendation.This paper presents an algorithm based on the features of product,the customer’s purchased logs and real-time browsing action.Firstly the content of on-line browsing is collected to deduce the purchase preference of current customer,then contrasts the purchased logs and the database of product features and analyzes them,by means of which,the preference degree of the product features and corresponding commendation reference groups can be obtained,therefore according to the similarity matrix of features entity,reference groups are recommended.Finally,integrated with the purchase preference and the former results,products are recommended to the customer.
Keywords:product features    personalized recommendation    preference degrees    similarity
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号