首页 | 本学科首页   官方微博 | 高级检索  
     

基于一种新的蚁群算法的QoS组播路由问题的研究
引用本文:张凌,毛力. 基于一种新的蚁群算法的QoS组播路由问题的研究[J]. 计算机工程与应用, 2009, 45(23): 123-126. DOI: 10.3778/j.issn.1002-8331.2009.23.034
作者姓名:张凌  毛力
作者单位:江南大学信息工程学院,江苏,无锡,214122;江南大学信息工程学院,江苏,无锡,214122
摘    要:在解决QoS(Quality of Service)组播路由问题上,针对蚁群算法缺点,提出了一种融合量子粒子群算法(QPSO)思想的多行为蚁群算法。该算法采用QPSO作为前期搜索,根据各粒子历史最优值来初始化路径信息素浓度,后期利用多行为蚁群算法来优化路径。仿真结果表明:该算法寻优能力强,可靠性高,是解决QoS组播路由问题的有效方法。

关 键 词:服务质量  量子粒子群  多行为  蚁群算法  组播路由
收稿时间:2008-05-06
修稿时间:2008-8-12 

Research on QoS multicast routing problem based on novel ant colony algorithm
ZHANG Ling,MAO Li. Research on QoS multicast routing problem based on novel ant colony algorithm[J]. Computer Engineering and Applications, 2009, 45(23): 123-126. DOI: 10.3778/j.issn.1002-8331.2009.23.034
Authors:ZHANG Ling  MAO Li
Affiliation:School of Information Engineering,Southern Yangtze University,Wuxi,Jiangsu 214122,China
Abstract:In allusion to the flaws of ant colony algorithm,a multi-behaved ant colony algorithm in combination with QPSO is presented for solving the QoS multicast routing problem.Firstly it adopts QPSO algorithm to approach early stage searching,and then initializing the concentration of pheromone based on each particle’s historical optimum value,finally it makes use of multi-behaved ant colony algorithm to optimize the path.The simulation results have demonstrated that this algorithm has strong optimization ability and high reliability.It’s the effective algorithm in solving QoS multicast routing problem.
Keywords:Quality of Service(QoS)  Quantum-behaved Particle Swarm Optimization(QPSO)  multi-behaved  ant colony  multicast routing
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号