首页 | 本学科首页   官方微博 | 高级检索  
     

结合文化算法的多种群协同变异PSO算法
引用本文:郭骥,彭鑫,马林华. 结合文化算法的多种群协同变异PSO算法[J]. 计算机工程与应用, 2011, 47(16): 46-48. DOI: 10.3778/j.issn.1002-8331.2011.16.015
作者姓名:郭骥  彭鑫  马林华
作者单位:空军工程大学 工程学院,西安 710038
摘    要:粒子群算法是一种新的基于群体智能的启发式全局优化算法,其概念简单,易于实现,而且具有良好的优化性能,目前已在许多领域得到应用。但在求解高维多峰函数寻优问题时,算法易陷入局部最优。结合文化算法和高斯变异的思想,提出一种基于文化算法和高斯变异的多群协同粒子群算法。该算法可以摆脱局部最优解对微粒的吸引,基于典型高维复杂函数的仿真结果表明,与多种群粒子群优化算法相比,该混合算法具有更好的优化性能。

关 键 词:文化算法  高斯变异  粒子群算法  
修稿时间: 

Particle swarms cooperative mutative optimization algorithm combining cultural algorithm
GUO Ji,PENG Xin,MA Linhua. Particle swarms cooperative mutative optimization algorithm combining cultural algorithm[J]. Computer Engineering and Applications, 2011, 47(16): 46-48. DOI: 10.3778/j.issn.1002-8331.2011.16.015
Authors:GUO Ji  PENG Xin  MA Linhua
Affiliation:College of Engineering,Air Force Engineering University,Xi’an 710038,China
Abstract:Particle Swarm Optimization(PSO) is a new heuristic global optimization algorithm based on swarm intelligence.The algorithm is simple,easy to implement and has good performance of optimization.Now it has been applied in many fields.However,when optimizing multidimensional and multimodal functions,the basic particle swarm optimization is apt to be trapped in local optimum.Combing with cultural algorithm and Gaussian mutation,an improved particle swarms cooperative optimization algorithm is presented.This modified version can break away from the attraction of the local optimal solution.Simulation results on benchmark complex functions with high dimension show that this algorithm performs better than the basic particle swarms cooperative optimization algorithm.
Keywords:cultural algorithm  Gaussian mutation  Particle Swarm Optimization(PSO)
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号