首页 | 本学科首页   官方微博 | 高级检索  
     

ICA和线性神经网络在带噪语音分离中的研究
引用本文:吴莉莉,曹晴,李辉. ICA和线性神经网络在带噪语音分离中的研究[J]. 计算机工程与应用, 2010, 46(16): 143-146. DOI: 10.3778/j.issn.1002-8331.2010.16.042
作者姓名:吴莉莉  曹晴  李辉
作者单位:河南农业大学 理学院,郑州 450002
摘    要:用基于独立分量分析(ICA)的盲源分离方法对强噪声背景下的混合语音信号进行分离时,如果忽略噪声的影响则会产生很差的分离效果。为克服此不足,结合噪声对消和盲源分离,提出了一种在强噪声背景环境下的混合语音分离方法,即先将带噪观测信号通过线性神经网络构成自适应噪声对消器,然后采用ICA进行分离,与增加一路噪声作为源信号的分离方法相比,该方法具有更好的分离效果。

关 键 词:独立分量分析  线性神经网络  噪声对消  语音分离  
收稿时间:2009-11-23
修稿时间:2010-2-8 

Study of noised speech separation based on ICA and linear neural network
WU Li-li,CAO Qing,LI Hui. Study of noised speech separation based on ICA and linear neural network[J]. Computer Engineering and Applications, 2010, 46(16): 143-146. DOI: 10.3778/j.issn.1002-8331.2010.16.042
Authors:WU Li-li  CAO Qing  LI Hui
Affiliation:College of Sciences,Henan Agricultural University,Zhengzhou 450002,China
Abstract:The neglect of the noise generally causes worse effect in the blind separation of mixed speech signal by Independent Component Analysis(ICA),which is sampled in the environmental of strong noise.In order to overcome this deficiency,here,by means of combining the noise canceller and ICA,a new separation method of mixed speech signal under the condition of strong noise is proposed.Firstly,making the mixed signal pass through the noise canceller,which is accomplished by adaptive linear neural network,then using the ICA algorithm to separate the mixed signal.Compared with another separation method,which increasing the noise as a source signal,the proposed method has a better separation effect.
Keywords:Independent component analysis(ICA)  linear neural network  noise cancellation  speech separation
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号