首页 | 本学科首页   官方微博 | 高级检索  
     

模拟水环境下的压紧弹簧刚度试验及计算模型的研究
引用本文:曹亮,石琳,吴铦敏,黄建学,陈冰冰,谢继高,郑三龙. 模拟水环境下的压紧弹簧刚度试验及计算模型的研究[J]. 核动力工程, 2020, 41(2): 66-71. DOI: 10.13832/j.jnpe.2020.02.0066
作者姓名:曹亮  石琳  吴铦敏  黄建学  陈冰冰  谢继高  郑三龙
作者单位:浙江工业大学化工机械设计研究所,杭州,310014,中广核工程有限公司核电安全监控技术与装备国家重点实验室,广东深圳,518172,中广核工程有限公司核电安全监控技术与装备国家重点实验室,广东深圳,518172,中广核工程有限公司核电安全监控技术与装备国家重点实验室,广东深圳,518172,浙江工业大学化工机械设计研究所,杭州,310014,浙江工业大学化工机械设计研究所,杭州,310014,浙江工业大学化工机械设计研究所,杭州,310014
摘    要:在模拟水环境下,对堆内构件压紧弹簧的缩比试样进行了刚度试验,并与有限元模拟、基于小扰度理论模型和大扰度随动模型的分析结果进行比较分析。结果表明,当摩擦系数按文献实验测值0.189取值时,有限元模拟、基于小扰度的理论模型和大扰度随动模型计算所得的刚度值均与试验所得的相近;卸载稳定段的刚度均明显小于加载稳定段的,是加载时的0.6倍左右。有限元模拟分析进一步阐明,在压紧弹簧变形过程中,压紧弹簧的截面存在转动,它与垫板之间的接触点并不是固定的,在加载和卸载过程中存在来回的径向位移。并且压紧弹簧接触面上的摩擦力方向是相反的,使得压紧弹簧在加载和卸载过程的刚度存在较大的差别。较小扰度理论模型、考虑压紧弹簧截面转动和接触点径向位移的大扰度随动模型所得的结果与有限元模拟更为接近。

关 键 词:压紧弹簧  刚度  大扰度随动模型  有限元数值模拟

Research on Stiffness Test and Calculation Model of Hold Down Spring under Simulated Water Environment
Cao Liang,Shi Lin,Wu Xianmin,Huang Jianxue,Chen Bingbing,Xie Jigao,Zheng Sanlong. Research on Stiffness Test and Calculation Model of Hold Down Spring under Simulated Water Environment[J]. Nuclear Power Engineering, 2020, 41(2): 66-71. DOI: 10.13832/j.jnpe.2020.02.0066
Authors:Cao Liang  Shi Lin  Wu Xianmin  Huang Jianxue  Chen Bingbing  Xie Jigao  Zheng Sanlong
Affiliation:(Institute of Process Equipment and Control Engineering,Zhejiang University of Technology,Hangzhou,310014,China;State Key Laboratory of Nuclear Power Safely Monitoring Technology and Equipment,China Nuclear Power Engineering Co.,Ltd.,Shenzhen,Guangdong,518172,China)
Abstract:In the simulated water environment, the stiffness test of the shrinkage specimen of Hold Down Spring of The Reactor Internals was carried out, and compared with the analysis results of the finite element simulation, theoretical model based on small disturbance and the large disturbance follow-up model. The results show that when the friction coefficient is 0.189 according to the experimental value of the literature, the finite element simulation, the stiffness value calculated based on the small disturbance theory model and the large disturbance follow-up model are similar to those obtained by the test;The stiffness of the unloading stable section is significantly smaller than that of the loading stable section, which is about 0.6 times that of the loading. The finite element simulation analysis further clarifies that during the deformation process of Hold Down Spring, the section of Hold Down Spring has a rotation, and the contact point between it and the pad is not fixed, and there is a radial displacement back and forth in the process of loading and unloading. Moreover, the direction of the frictional force on the contact surface of the Hold Down Spring is reversed, so that there is a large difference in the stiffness of the Hold Down Spring during the loading and unloading process. To compare with theoretical model based on small disturbance, the results obtained by considering the large disturbance follow-up model of the Hold Down Spring section rotation and the radial displacement of the contact point are closer to the finite element simulation.
Keywords:Hold down spring  Stiffness  Follow-up model under large disturbance  Finite element numerical simulation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《核动力工程》浏览原始摘要信息
点击此处可从《核动力工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号