首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度卷积神经网络和条件随机场模型的PolSAR图像地物分类方法
引用本文:胡涛,李卫华,秦先祥,王鹏,余旺盛,李军. 基于深度卷积神经网络和条件随机场模型的PolSAR图像地物分类方法[J]. 雷达学报, 2019, 8(4): 471-478. DOI: 10.12000/JR18065
作者姓名:胡涛  李卫华  秦先祥  王鹏  余旺盛  李军
作者单位:空军工程大学信息与导航学院 西安 710077;国防科技大学电子对抗学院 合肥 230037;空军工程大学信息与导航学院 西安 710077
基金项目:国家自然科学基金;国家自然科学基金;国家自然科学基金;陕西省自然科学基础研究计划
摘    要:近年来,极化合成孔径雷达(PolSAR)图像地物分类得到了深入研究。传统的PolSAR图像地物分类方法采用的特征往往需要针对具体问题进行设计,特征表征性不强。因此,该文提出一种基于卷积神经网络(CNN)和条件随机场(CRF)模型的PolSAR图像地物分类方法。利用预训练好的实现图像分类任务的卷积神经网络模型(VGG-Net-16)提取表征能力更强的图像特征,再通过CRF模型对多特征及上下文信息的有效利用来实现图像的地物分类。实验结果表明,与3种利用传统经典特征的方法相比,该方法能够提取更有效的特征,取得了更高的总体分类精度和Kappa系数。 

关 键 词:极化SAR   地物分类   条件随机场   卷积神经网络
收稿时间:2018-08-31

Terrain Classification of Polarimetric Synthetic Aperture Radar Images Based on Deep Learning and Conditional Random Field Model
HU Tao,LI Weihua,QIN Xianxiang,WANG Peng,YU Wangsheng,LI Jun. Terrain Classification of Polarimetric Synthetic Aperture Radar Images Based on Deep Learning and Conditional Random Field Model[J]. Journal of Radars, 2019, 8(4): 471-478. DOI: 10.12000/JR18065
Authors:HU Tao  LI Weihua  QIN Xianxiang  WANG Peng  YU Wangsheng  LI Jun
Affiliation:①.College of Information and Navigation, Air Force Engineering University, Xi’an 710077, China②.College of Electronic Countermeasure, National University of Defense Technology, Hefei 230037, China
Abstract:In recent years, Polarimetric Synthetic Aperture Radar (PolSAR) image classification has been investigated extensively. The traditional PolSAR image terrain classification methods result in a weak feature representation. To overcome this limitation, this study aims to propose a terrain classification method based on deep Convolutional Neural Network (CNN) and Conditional Random Field (CRF). The pre-trained VGG-Net-16 model was used to extract more powerful image features, and then the terrain from the images was classified through the efficient use of multiple features and context information by conditional random fields. The experimental results show that the proposed method can extract more features effectively in comparison with the three methods using traditional classical features and it can also achieve a higher overall accuracy and Kappa coefficient. 
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《雷达学报》浏览原始摘要信息
点击此处可从《雷达学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号